Paavo Raisanen
C# Perusopas

www.ohjelmoimaan.net

Tatd opasta saa vapaasti kopioida, tulostaa ja levittéa ei kaupallisissa tarkoituksissa.
Kuitenkaan omille nettisivuille opasta ei saa liittaa.
Opetustarkoituksessa materiaali on vapaasti kaytettavissa.
Verkko-opetuksessa oppaan saa julkaista oppilaille tarkoitetuilla sivuilla.

http://www.ohjelmoimaan.net/

Siséllysluettelo

1: Alkuun

1.1 Alkusanat

1.2 Miten tietokone ajattelee?
1.3 Johdatus konekieleen

1.4: Ensimmainen ohjelma

2: Muuttujat
2.1: Kokonaislukutyypit
2.1.1: Taulukko kokonaislukutyypit
2.2: Reaali- eli desimaaliluvut
2.2.1: Taulukko reaali- eli desimaaliluvut
2.3: Aritmeettiset operaattorit
2.3.1: Taulukko aritmeettiset operattorit
2.4: Arvonmuunto-operaattoreita
2.4.1: Taulukko arvonmuunto-operaattoreita

3: Tiedon kysyminen ja tulostus konsoliohjelmissa
3.1: Tiedon tulostaminen
3.1.5: Esimerkkiohjelma muuttujista, niiden tulostamisesta ja tietotyypin
tulostuksesta
3.2: Tiedon lukeminen ja poikkeuksien kasittely

4: Boolean operaattorit
4.1:Vertailuoperaattorit
4.2: Loogiset operaatorit
4.3: Ehto-operaattori ?

5: Vertailulauseet
5.1: if lause
5.1.1: Esimerkkiohjelma karkausvuosi
5.2: switch lause
5.2.2: Esimerkkiohjelma kuukausien péivien lukumaarésté
5.2.3: Esimerkkiojelma merkin vertaaminen
5.2.4: Esimerkkiohjelma merkijonosta switch lauseessa

6: Toistolauseet
6.1: for silmukka
6.1.4: Esimerkkiohjelma for silmukasta ja satunnaislukugeneraattorista
6.2: while silmukka
6.2.1: Esimerkkiohjelma kertoma while lauseella
6.3: do-while silmukka

7: Hyppylauseet
7.1: continue
7.2: break

7.3: goto

8: Visual Studion kaytosta
8.1: Solution Explorer
8.2: Ohjelman tallennus
8.3: Ohjelman ajaminen
8.4: Ohjelman julkaisu

9: Taulukot
9.1: Yksiulotteinen taulukko
9.2: Moniulotteinen taulukko
9.2.1: Esimerkkiohjelma yksi- ja moniulotteisesta taulukosta
9.3: Sisakkainen taulukko
9.3.1: Esimerkkiohjelma sisakkaisista taulukoista

10: strig lauseista ja char tyypista
10.1: Esimerkkiohjelma merkkijonojen kasittelysta: siansaksa

11: Lueteltu tyyppi enum ja vakio const
11.1: Esimerkkitehtdvd enum lauseesta ja const vakiosta

12: foreach() toistolause
12.1: Esimerkkiohjelma foreach lauseesta

13: Ohjausmerkit
13.1: Taulukko ohjausmerkit

14: Paivamaaran ja ajan ottaminen tietokoneen kellosta
14.1: Esimerkkiohjelma aikaméaarésta

15: Matemaattisia operaatioita
15.1: Esimerkkiohjelma matemaattisista operaatioista

16: bool tyyppi
17 Satunnaisluku
18: Hyddyllisia linkkeja

19: Lahteet

1 Alkuun
1.1: Alkusanat

Miksi valita ohjelmointikieleksi C# (44nnetddn C Sharp. Lyhennet&an joskus myds
CS. Huomaa, etté eri asia kuin tyylikieli CSS.)? C# on ensimmaiseksi
ohjelmointikieleksi yhta hyva kieli, kuin joku muukin. Ei parempi, eikd huonompi.
C# on lahinn& Javan kilpailija, joka on yleisinpid ohjelmointikielia erilaisilla
korkeakoulutason ohjelmoinnin alkeiskursseilla. My6s C# :ia kdytetdan ohjelmoinnin
alkeis- ja jatkokielend myos korkeakoulutasolla. Edelleen perus C tai Basicit ovat
helpoimpia kielida ohjelmoinnin opetteluun. Basicin opettelulla ei vain ole
my6hemmin ohjelmoinnissa suurtakaan hyotyd, poislukien tasta tosin Visual Basic.
Jos olet nyt kirjoittamassa ihka ensimmaista ohjelmaa, joku QBasic on kylla
kieltdmatta helppo valinta opetella ihan ohjelmoinnin ensiaskeleet. Kuitenkin, kunhan
ihan ensimmaiset ohjelmat saa tehtyd, ohjelmointi sujuu ihan samoin C # :Kin.
Koneenldheisessa ohjelmoinnissa C yleisin kieli. C# on kehitetty Javasta ja C++ :sta.
C# on ohjelmoinnin opiskeluun hyvin kaytanndllinen kieli sen jalkeen kun
alkukankeuksista paasee. lhan kuten Javalla ja C++:lla, C#:lla pystyy lahes kaikkeen,
mit4 tavallinen ohjelmoija tarvitsee. Liséksi kun osaa yht4 ohjelmointikielta, muiden
opiskelu on helppoa. Ongelmat ratkaistaan pitkalti samalla tavalla, joskin eri
syntaksilla, ja erilaisilla erikoistoiminnoilla. C#:lla pystyy tekemé&an myos Windows
mobiiliohjelmia. C#:lla pystyy tekemaén seka konsoli-, Windows etté nettiohjelmia.
Silla pystyy palvelinohjelmointiin ASP.NET ohjelmointina, ja se toimii tietokantojen,
kuten MySQL ja MSSQL kanssa. C# ASP.NET toimii hyvin yhteen scriptikielien,
kuten ActionScript (Flash) ja JavaScript (Ajax) kanssa. Erikoisuutena pelipuolella on,
ettd Microsoftin XNA peliohjelmointi scriptikirjasto kayttda C#:ia ja samoin Unity
3D pelimoottorin nykyisin ainoa sallittu ohjelmointikieli on C#. C# on myos yksi
Microsoft Silverlightin sallimista kielista. Silverlight on Microsoftin vastine Flashille.
C# on télla hetkellad eniten kaytetty .NET alustainen kieli. Muita .NET alustalla
toimivia kielid ovat mm. Visual Basic .NET, Visual C++ ja Visual J#. Visual J#:n
avulla voidaan Javaa kayttdd .NET alustalla. Javan tapaan C# on ns. tavukoodikieli,
joka ajetaan virtuaalikoneessa, joka mahdollistaa ohjelmien toimimisen erilaisissa
kayttoymparistoissa. Javan tapaan myds C# on olio-ohjelmointikieli.

Mainittakoon, ettd jos tdssa kehun C# :ia, Java ja PHP ovat kielid, joita eritoten
internet ohjelmoinnissa ei voi ohittaa, eiké ole tarpeenkaan. Internet ohjelmointi on
oma maailmansa, joka on opeteltava erikseen, vaikka esim. laskutoimitukset, tekoély
jne. toimivatkin samalla lailla. C ja C++ ovat taasen eritoten joissakin ohjelmoinnin
osa-alueissa, kuten koneenlaheisessé- tai kayttojarjestelméohjelmoinnissa lédhes
standardeja. Kuitenkin C# pystyy jokseenkin kaikkeen samaan. Eritoten
peliohjelmointipuolella C Sharppia kaytetdan paljon, samoin Windows
ohjelmoinnissa. Internet puolella C# kaytdssa on ongelma, etté se toimii l&hinna
Windows palvelimilla (11S), jotka ovat kalliinpia, kuin yleisimmin kaytetyt Linux
palvelimet (Apache). Samoin, vaikka C# ASP.NET ohjelmoinnissa voi kdyttaa halpaa

(Ja toimivaa) MySQL tietokantaa, siitd on vaikea saada tietoa. Yleensd ASP.NET
ohjelmoinnissa kaytetadn Microsoftin MSSQL tietokantaa, joka on kallis.

Tama opas pyrkii lahtemaan hyvin alkeista. Sinulla on kuitenkin hyotya, jos osaat jo
hieman jotain ohjelmointikielt4. Jos olet kokeneempi ohjelmoija, ja haluat opetella
uuden kielen, voit kenties sivuuttaa tdmén oppaan alun hyvin nopeasti.

1.2: Miten tietokone ajattelee?

Tietokone ei ajattele taysin samalla tavalla kuin ihminen. Kuitenkin, tietokone ei
ajattele taysin eri tavalla kuin ihminen. Tietokoneen ohjelmointi vaatii vain
analyyttisté ajattelutapaa. Tieokone ei ymmaérra asiakokonaisuuksia, vaan sille on
kaikki esiteltdva taysin yksityiskohtaisesti. Nain on erityisesti konekielessa, jolla
tietokone vime kadessa ajattelee. Konekielessa esim. laskutoimitus 4*6 tapahtuu
nain:

Esimerkki 1:

1: laskuri=3

2: lataa muuttujaan 6

3: silmukka: lisdd muuttujaan 6

4: véhennetdan laskuria yhdella ja palataan silmukkaan laskuri kertaa

Koska rivilla kaksi alustetaan jo valmiiksi muuttujaan kuusi, laskuriin laitetaan
muuttuja-1, ja ndin, kun muuttujaan lisatdan kolme kertaa arvo kuusi, muuttuja saa
lopputulokseksi 24.

Korkeamman tason kielissé on toimintoja helpotettu tekemallda monimutkaisenpia
késkyja. Voit siis suoraan Kirjoittaa muuttuja=4*6. Itse tietokone kuitenkin suorittaa
ohjelman aina konekielisesti. Erilaiset tietokoneen kaskyt ovat néin oikeastaa
konekielisten ohjelmien aliohjelmakutsuja. Tavallaan ohjelmoija myds itse tekee
“kaskyja”, aliohjelmakutsuja ,tehdessadn aliohjelmia (funktioita) ja olio-
ohjelmointikielissa (kuten C#), tehdesséén luokkia ja olioita.

Ihminen pystyy helposti kasitteleman suuria kokonaisuuksia, opittuaan ne ensin.
Kuitenkin myos tietokonetta voi opettaa. Kun ohjelmoija tekee valmiin olion, esim.
olion, joka laskee paivamaaran tarkistuksen (onko karkausvuosi, onko kuukaudet 1-
12, onko paivamaara annetussa kuukaudessa mahdollinen, jne.), han voi kayttaa tata
oliota muissakin ohjelmissaan. N&in ohjelmoija on ikdankuin luonut oman kaskyn.
Hén voi nyt liittd4 tdméan olion, “kdskyn”, mydhempiin ohjelmiin, ja kayttia sitd
syottamalla vain “’kdskylle” haluamansa tiedot.

Esimerkki 2: kuinka kertoa tietokoneelle, kuinka auto rakennetaan.

1: Luodaan luokka auto.
2: Maaritellaan eri metodeissa esim. seuraavat toiminnot

2.1: Tee kori
2.2: Tee moottori
2.3: Tee renkaat
2.4: ne
3: Asiat on vield pikottava pienemmiksi, jotta tietokone ymmartaa sen. Niinpa
tietokoneelle on yksinkertaistettava eri osaalueiden toteuttaminen, eli:
3.1: Tehd&&n moottori
3.1.1: Tee itse moottori
3.1.2: Lis&a lisélaitteet
3.1.2.1: Lisaa laturi
3.1.2.2: Lisaa sytytysjarjestelma
3.1.2.3: Lisaa jaéhdytysjarjestelméa
4: Tietokone ei kuitenkaan osaa tehda esim. laturia ilman tarkenpia neuvoja. Sille on
vield kerrottava, mita osia laturi siséltdé. Sitten on vield kerrrottava, miten osat
valmistetaan jne.
Kun olet kerran tehnyt tdman, voit periaatteessa rakentaa samarakenteisen auton
antamalla vain tiedot oliolle. Eli kaikista osista tehddaan muuttujia. On esim seuraavat:

Esimerkki 2:

Moottori:

1: Laturin tyyppi

2: Sytytysjarjestelmé
3: Jadhdytysjarjestelma
4: Moottorin tyyppi

Jos on tarpeen, eli osat eivét ole noin yksinkertaisissa paketeissa”, vaan kuten kuten
esimerkissa kaksi, on tietokoneelle syotettava tiedot kaikkia lisdosien osia mydten.
Tietokone on kuitenkin taitava toistamaan ja myds muistamaan. Kun sille kerran on
kerrottu joku rakenne, se osaa vaihtuvilla tiedoilla helposti tehda samanlaisen.
Uuden auton rakentaminen ei tosin ole néin yksinkertainen. Auto toki voidaan koota
tarvikeosista, kuten esimerkissé kolme, mutta jos vaihdetaan moottorin tyyppia,
joudutaan todenn&kaisesti vaihtamaan mya0s tarvikeosien tyyppi. Tietokoneelle
voisikin opettaa, mité lisdosia kukin moottori kdyttd4. Sensijaan siiné tulee vastaan
tietokoneen rajoittuneisuus, etta jos esim. laturiin vaihdetaan erilainen ruuvi,
luultavasti koko laturi on suunniteltava uudelleen. Tallainen suunnittelu ei ole
tietokoneelle helpoa opettaa, vaan yleensa tehtéisiin koko laturi aliohjelma uudelleen.

Kuten huomaat, tietokone ei ole kovin alykas. Silt4 puuttuu paljolti ihmisen
suunnittelutaito ja inovatiivisuus. Se on kyll4 taitava laskemaan, toistamaan ja
muistamaan. Tietokonetta pyritaan kehittdaméaan alykkdammaksi erilaisilla
tekoélyohjelmilla, joilla jotain saavutuksia on saatu esim. robottitekniikassa.

1.3: Johdatus konekieleen

Taman ymmartadminen ei ohjelmoinnin kannalta ole valttdmatonta. Tama kuitenkin
selvent&d, kuinka tietokone ajattelee, ja on ikadnkuin jatkoa esimerkille yksi.
Tietokone ymmartaa viime kadessa vain nollia ja ykkosia, eli bindarilukuja, kuten
11001011. Kaytdnnossa konekieliohjelmoijat korvaavat nama bindériluvut
symbolisella konekielellg, eli Assemblylla. Yht& bin&érilukua vastaa jokin
kirjainyhdistelma, eli esim. add, inc, jr, djnz, jne, jotka tietokone muuttaa
bindariluvuksi. On mahdollista muuttaa ndmé lyhenteet taulukon avulla (tai
ulkomuistista, jos on hyva muisti) suoraan binaariluvuiksi, ja ohjelmoida siis
tietokonetta suoraan nollilla ja ykkosilla. Tietokoneen prosessori ei ymmarra
kovinkaan suurta késkykantaa. Se 1&hinna osaa laskea yhteen, véhenté4, tallentaa,
hypété, toistaa ja lahettdd ja vastaanottaa tietoja porteista (in, out). Esimerkiksi
yksinkertainen ”Terve Maailma!” -ohjelma tallentaa tietokoneen muistiin sanat
”Terve Maailma!” kirjain kerrallaan perdkkaisiin muistipaikkikkoihin (ja
valilyontikoodin véliin). Sitten tulostus tapahtuu kdymalla kyseinen muistikohta
muistipaikka kerrallaan 1&pi, ja syottdmall& kirjainkoodi (binddrilukuina muistissa)
numero kerrallaan ndyton tulostuksen portin lapi ndytolle. Tietokone osaa sitten
muuttaa bin&&riluvun kirjaimeksi.

Lasku 4*6 tapahtuisi konekielelld seuraavasti:

lataa akkuun 6

lataa laskuriin 3

silmukka: liséa akkuun 6

palaa silmukkaan ja védhenna laskuria

Eli Z80 assemblerilla:

LD a,8

LD b,3

silmukka: ADD a,8
DJNZ silmukka

Ja tietokoneen lopulta ymmartamasséd muodossa Z80 konekielessa:

00111110
00001000
00000110
00000011
11000110
00001000
00010000
00000000

Tassa siis esimerkiksi kiskya LD a vastaa binddriluku 00111110 ja sitd seuraa
numero kahdeksan binaarimuodossa,eli 00001000.

1.4: Ensimmainen ohjelma

Oikeastaan C#:sta, kuten Javastakin hieman vaikean opittavan ensimmaiseksi tekee
ensimmaisten ohjelmien kirjoittaminen. Kun ensimmaisisté ohjelmista selviaa,
ohjelmointi C#:lla on aivan yhta helppoa, kuin vaikka Basicilla. Myéhemmin
laajoissa isommissa ohjelmissa C#:n edistyksellisyys tekee siitd aivan eri tavalla
paremman ohjelmointikielen Basiceihin verrattuna. Oikeastaan Basicit eivat sovellu
kuin ohjelmoinnin opetteluun, ja kun védhan ndkee vaivaa, oppii paremmin
kehittyneemmilla kielilla. Basiceista tosin erikseen mainittava aiemminkin mainittu
Visual Basic, joka on ihan ammattikdyttssa.

Jos ohjelmoitaisiin Basicill4, ensimmaisen ohjelman teko olisi helppoa. Pitdisi vain
Kirjoittaa kaantajaan:

Esimerkki 4:
1: print “Terve Maailma!™:

ja kdynnistda tulkki ”run” komennolla, niin teksti ndkyisi ndytolla. Mainittakoon, ettd
toisin kuin aikoinaan pikkukoneilla Commodore 64:lla, MSX:II& jne., tietokoneiden
mukana nyKkyisin ei tule mitdan ohjelmointikielta. llmaisia ohjelmointikielia ja
ohjelmointiymparistdja on kuitenkin saatavana vaikka kuinka paljon. Kaytéan tassa
Microsoft Visual Studio 2010 Express ohjelmaa, jonka saa ilmaiseksi ladattua
osoitteesta http://www.microsoft.com/express/Downloads/ .

[Imaisella Novellin "Mono” kehitysymparistolla C# ohjelmia voi kehittaa ja ajaa eri
kayttojarjestelmissa. Lisatietoa I0ytyy Monon padsivulta http://www.mono-
project.com/Main_Page

Sitten ensimmainen ohjelma. Kéaynnistd Visual Studio. Klikkaa ”New Project” .
Kirjoita avautuvassa ikkunassa alas ”Name” kohtaan projektin nimeksi
”EnsimmainenOhjelma”. Klikkaa sitten kerran "Console Application” kohtaa ja sen
jélkeen alhaalta "OK”.

Sinulle avautuu seuraava koodi.
Kuten néet, antamasi ohjelman nimi tulee namespace kohtaan. Sitdon hyvin vaikea
muuttaa myohemmin, ja séilyttd4 ohjelman toimivuus.

http://www.microsoft.com/express/Downloads/
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace EnsimmainenOhjelma
{
class Program
{
static void Main(string[] args)
{
}

}

Annoin projektille nimeksi “EnsimmainenOhjelma”, joka nidkyy “namespace”
kohdassa. Huomaathan: ohjelmointikielet yleensé&én eivat hyvaksy aakkosia nimissé.
Aakkoset toimivat kuitenkin tulostettaessa lauseissa. Ohjelmassa on “using” kohta.
Siihen kuuluvat luokkakirjastot. Eri kaskyt vaativat toimiakseen eri luokkia, jotka on
sisallytettdva ohjelman alkuun.

Kirjoita Main() lohkoon aaltosulkeiden { } véliin seuraava koodi. Aaltosulkeet
loytyvat ndppaimistolta AltGr 7 ja 0. // merkinté tarkoittaa kommenttia, eli silla
ohjelma ei tee mitaan. Vaihtoehtoisesti kommentti voidaan sijoittaa /* ja */
merkinnadn véliin. Huomaat, ettd Visual Studiossa on ennustava tekstin syotto, josta
ensimmaisen tai ensimmaisten Kirjaimien kirjoittamisen jalkeen on helppo valita
kéasky (metodi).

//Ensimmé&inen ohjelmani

Console.Writeline ("Terve Maailma!");

Console.Write ("Paina jotain nappainta jatkaaksesi...");
Console.ReadKey (true) ;

Valitse sitten Debug/Start Debugging, ja ndyttdon ilmestyy ensimmaéisen ohjelmasi
teksti. Huomaathan, ettd C#:ssa kaskyjen ja muuttujien nimissa isoilla ja pienilla
kirjaimilla on merkityksensd. On eri asia kirjoitatko “Luku” vai "luku”.

Tassa vield ensimmainen ohjelma ja esimerkki kommentin kéytostd. Kommentteja
kannattaa kayttaa selventdmadn ohjelmaa, jotta sinun on helpompi my6hemmin
ymmartad ja muokata koodia.

1.4.1: Ensimmainen ohjelma

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace EnsimmainenOhjelma
{
class Program
{
static void Main(string[] args)
{
/* Tadssa on esimerkki ensimmdisestd ohjelmasta
ja kommenttilauseen kaytosta */
Console.WriteLine ("Terve Maailma!") ;
Console.Write ("Paina jotain nappainta
Jjatkaaksesi...");
Console.ReadKey (true) ;

}
}
{ ja } eli aaltosulkeet ovat helpompi ymmartad, kun tietdd, mita ne merkitsevat
Pascalissa, eli { on ”Begin” ja } on ”End”. Aaltosulkeet aloittavat ja lopettavat

jonkun lohkon.

Huom. Ohjelmarivit paattyvat yleensa ; merkkiin (puolipiste). Joitain poikkeuksia on,
kuten for {3}, while {} tai switch {} rakenteet, jotka kasitellddn mydhemmin.

Jo tdssé vaiheessa on hyva vilkaista oppaan kohtaa 8: ’Visual Studion kaytosta”.

2 Numeeriset muuttujat

Muuttujat ovat sinulle varmast tuttuja matematiikasta, jossa niita kaytetaan
monenlaisissa yhtéloissa, esim. y=2x+4. Aivan sama periaate muuttujilla on myos
ohjelmoinnissa. Numeromuuttujien lisdksi ohjelmoinnissa voi kuitenkin olla myos
merkkimuuttujia. Taulukoita kdytetedan paljon. Muuttujista on runsaasti erilasia
tyyppejé, jotka esittelen tdssa luvussa. Muuttujista on seka C# tyyppi, ettd .NET
tyyppi. Kummatkin toimivat C# ohjelmoinnissa, mutta jos kdytét jotain muuta .NET
kKielt4, .NET tyypin muuttujat ovat standardi.

Kaytan tassa * merkkid kertomerkking, ja » merkkia potenssiin korotettuna. 10™n
tarkoittaa kaytannossé, ettd lukuun lisatdan n nollaa (pilkkua siirretdd&n n numeroa
oikealle) , eli 2*1076 on 2 000 000. Jos potenssii korotuksessa on miinus merkKi,
pilkkua siirretddn n numeroa vasemmalle, eli

2*107-6 on 0,000 002.

Muuttujan tietotyypin voi tutkia GetType() metodilla, josta esimerkki myohemmin
kohdassa 3.1.5.

Huomaathan, ettd C Sharp kayttaa englannikielistd merkistoa, eli muuttujien, ja
metodien (kédskyjen) nimissi ei voi olla ”44kkosia” (4,0,4).

C# pitéé kirjaa muuttujista ja itsekin tehdyista metodeista. Kun olet kerran méaritellyt
muuttujan, ja alat kirjoittamaan muuttujaa myéhemmin kéyttéesséasi, ohjelma
ehdottaa méaarittelemiési muuttujia.

2.1: Kokonaislukutyypit

2.1.1: Taulukko kokonaislukutyypit

C# NET Koko Arvoalue

tyyppi | tyyppi | tavuina
sbyte |Shyte 1 -128...127 voi olla etumerkki
byte Byte 1 0...255 huom. ei etumerkkia
short |Intl6 2 -32.768...32.767 voi olla etumerkki
ushort |UInt16 2 0...65535 huom. ei etumerkka
int Int32 4 -2.147.483.647...2.147.483.647 voi olla etumerkki
uint Ulnt32 4 0...4.294.967.295 huom. ei etumerkkia
long Int64 8 noin -9*10 ~18...9*10"18 voi olla etumerkki
ulong |UInt64 8 noin 18*10718 huom. ei etumerkki&

Yleisimmin ndista kdytetaan int -tyyppia.

Esim. 2.1:
//Muuttuja maaritelldan néin
int a;
int x,y,z;
long k;

Kaikki muuttujat on esiteltdva ennen kayttoa.

Kuten huomasit, samantyyppisia muuttujia voi esitell& perékkéin lueteltuna pilkulla
erotettuna. Usein muuttujat joutuu myds alustamaan. Jos yritat kayttdd muuttujaa
ohjelmassa ilman, etta siihen on varmasti sijoitettu arvo, kaantaja ilmoittaa virheesté:
Use of unassigned local variable 'a’. Tassé tapauksessa muuttuja a oli jatetty
alustamatta.

Esim. 2.2:
//Muuttujat voi esittelyn yhteydessa alusta néin
int a=0;
int x=8, y=0, z;
long k=0;
//Téssa z on jatetty alustamatta

2.2: Reaali- eli desimaaliluvut

2.2.1: Taulukko reaali- eli desimaaliluvut

C# NET Koko Arvoale
tyyppi tyyppi | tavuina
float Single 4 noin +/- 1,5*10"-45...+/-3,4*10"38
double Double 8 noin +/-5*10"-324...+/-1,7*10"308
decimal Decimal 12 noin +/-1.0*10"-28...+/-7,9*10728
20:11& merkittavalla numerolla

Joissain tapausissa float ja double tyyppien kanssa voi sattua pyoristysvirheité hyvin
suurissa ja tarkkuutta vaativissa laskuissa. decimal tyyppi laskee 28 luvun
tarkkuudella, eika siind voi sattua pyoristysvirheita.

Kun kaytét float tai decimal tyypin muuttujaa taytyy luvun loppuun laittaa
Kirjainmerkinta seuraavan esimerkin mukaisesti. Huomaa: ohjelmoinnissa kaytetaan
desimaalipistetta, ei pilkkua.

Esim. 2.3:
float h=2.16f;
[ltai
float a=4.12F;

decimal b=0.1612m:;
[ltai
decimal k=7.18M;

double muuttujan loppuun ei ole pakko laittaa merkkié, mutta voidaan laittaa d tai D.
\oit myos alustaa reaalilukumuuttujan eksponentaaliesityksen avulla, eli:

Esim. 2.4:
float a=2.438768e+4f; //a saa arvon 24387,68 eli sama kuin 2.438768*10"4
decimal b=14.276e-3M; //b saa arvon 0,014276 eli sama kuin 14.276*10"-3
double c=8171.2e-2; //c saa arvon 81,712 eli sama kuin 8171.2*10/"-2

2.3: Aritmeettiset operattorit

2.3.1: Taulukko aritmeettiset operattorit

Operaattori Tarkoitus Esimerkki
+ Summa (yhteenlasku) a+b
- Erotus (vahennyslasku) a-b
* Tulo (kertolasku) a*b
/ Osamaaré (jakolasku) alb
% Jakojaannos a%b

2.4: Arvonmuunto-operaattoreita

2.4.1: Taulukko arvonmuunto-operaattoreita

Operaattori Kuvaus Esimerkki Merkitys
+= Y hteenlasku X+=y X=X+Yy
-= Véhennys X-=y X=X-Yy
= Kerto X=y X=X*y
/= Jako X/=y x=xly
%= Jakojaannos x%=y X=x%y
++ Etulisays ++X X=x+1
-- Etuvéhennyt --X X=X-1

Operaattori Kuvaus EsimerkkKi Merkitys
++ Jalkilisays X++ X=X+1
-- Jalkivéhennys X-- y=y+1

Taulukossa nékyy vahennys epéselvand, mutta siind on miinus ja = merkit perakkain.
Oma mielipiteeni on, ettd kannattaa paasaantoisesti kayttaa "Merkitys” sarakkeessa
olevia hieman pidenpid muotoja. Ne ovat huomattavasti selkeanpia. Nama kannattaa
kuitenkin painaa mieleen, silld voit joutua lukemaan koodia, jossa ndité on kaytetty

paljonkin.

Kuitenkin ++ ja — operaattorit ovat laskureissa yleisia, ja tavallisimmin kaytettyja
vahennyt ja lisdys operaattoreita. Esim. i++ tai i-- .

3 Tiedon tulostus ja kysyminen konsoliohjelmissa
3.1: Tiedon tulostaminen
Konsoliohjelmissatieto tulostetaan Console.WriteLine() metodilla.
Esimerkki 3.1.1: Console.WriteLine(”Tulostettava teksti”);
Lauseita voi yhdistelld ja muuttujia lisat& + operaattorin avulla.

Esimerkki 3.1.2: Console.WriteLine(”Muuttujan a arvo on” + a + ”’ja muuttujan b
arvo on” +b);

Jos et halua rivinvaitoa lauseen jalkeen, voit kayttdd myos Console.Write() metodia.
Esimerkki 3.1.3: Console.Write(”Tulostettava teksti.”);
Muuttujat voi tulostaa my0s seuraavasti:

C#:ssa voi muuttujat laittaa aaltosulkeissa tulostuslauseen sekaan. Huomaa, etté
aaltosulkeisiin

laitetaan numero. Lauseeseen sijoitettavat muuttujat listataan pilkulla eroitettuna
heittomerkien

jalkeen. Luettelon ensmmaisen muuttujan numero on 0, seuraavan 1 jne.

Esimerkki 3.1.4:

int x=20, y=40;

Console.WriteLine ("X-koordinantti on {0} ja Y-
koordinantti on {1}.", x,V);

//Lause tulostaa saman kuin:

Console.WritelLine ("X-koordinantti on " + x + " ja Y-
koordinantti on " + y + ".");

Avaa Visual Studio ohjelmassa konsoliohjelma (Console Application) ja anna sille
nimeksi TulostamisEsimerkki. Muokkaa sitten koodi seuraavan laiseksi. Voit toki
ottaa suoraan tastakin koodin kopioi/ liit4 toiminnolla.

3.1.5: Esimerkkiohjelma muuttujista, niiden tulostamisesta ja tietotyypin
tulostuksesta

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TulostamisEsimerkki
{
class Program
{
static void Main(string[] args)
{
//Madritetdan int tyyppisid muuttujia.
//Muuttujat voi samalla alustaa Jjos
//haluaa.
//Mikali kayttdaa muuttujaa ennenkuin sihen on
//sisdllytetty mitaan arvoa,
//k&dantaja antaa virheilmoituksen.
//Arvon vol varalta alustaa jo alussa
//nollaksi, mikali ei ole varma,
//sijoitetaanko ennen kayttod arvoa.
int a, b =0, ¢ = 4;
//Madaritetdan double tyyppisid muuttujia
double pii = 3.14, k;
//Madritetaan float tyyppisia muuttujia
float x, y = 5;

//Suoritetaan laskutoimituksia. Tassa

//tapauksessa kaikkia muuttujia ei

//tarvinnut alustaa, koska niihin

//lasketaan arvo ennen muuttujan muuta

//kayttod, kuten tulostusta.

//Tama ei toimisi: b=a+c, koska muuttujalla a

//ei ole alkuarvoa.

//Sensijaan ndin toimii:

a =b + c;

k = pii * 2;

x =y / 2;

//Tulostetaan arvot

Console.WriteLine ("Muuttujan a arvo on " + a
+ ", bin arvo on " + b+ " ja c:n " + c);

Console.WriteLine ("Muuttujan pii arvo on: " +
pii + ", kin " + k+ ", x:in " 4+ x + " jJa y:n " + vy);

Console.WritelLine ("Muuttujan pii tietotyyppi
on " + pii.GetType());

Console.WritelLine ("Lukujen 5 ja 2 jakojaannos
on " + 5 % 2);

// \n merkinndalld& voidaan tulostaa

//rivinvaihtoja

Console.Write ("\nPress any key to continue

Console.ReadKey (true) ;

3.2: Tiedon lukeminen ja poikkeuksien kasittely

Tiedot luetaan konsoliohjelmissa Console.ReadLine() metodilla. Tieto luetaan string
tyyppisend, joten se on muutettava numeeriseksi erillisella Parse metodilla, mikali
halutaan ké&sitell& numeroa.

Esim 3.2.1: string syote = Console.ReadLine();
int luku = int.Parse(syote);

C Sharpissa Console.ReadLine() metodilla ei voi kysymykseen laittaa tekstid, vaan
itse kysymys on Kirjoitettava Console.WriteLine() metodilla. Tyyppimuutoksen voi
tehd& myds suoraan kysymyslauseessa.

Esim 3.2.2: int luku;
Console.WriteLine(” Anna luku: *);
luku=int.Parse(Console.ReadLine());

Jos nyt kuitenkin sy6tetadén vastauksesi kirjain, tapahtuu virhe, kun yritetddn muuttaa
Kirjainta numeroksi (int tyypiseksi). Taman voi estdd kayttamalla “try/catch”
rakennetta. Seuraavassa esimerkki.

Esim. 3.2.3: int luku;
Console.WriteLine(”Anna luku:);
try

{
//Yritetdén tehda tyyppimuunnos

luku=int.Parse(Console.ReadL.ine());

}

catch

{

[*Tama kohta suoritetaan,
mikali tapahtui virhe*/

Console.WriteLine(”Tapahtui virhe.”);

}
finally

{

[ITama lohko suoritetaan aina

}

Poikkeuskasittelyyn voi lisatd Exception kohdan, joka tulostaa tapahtuneen virheen.
Muuta vain catch osiota néin:

Esim.3.2.4: catch (Exception ex)
{

Console.Writeline(ex.Message)

¥

Poikkeuskdsittelyyn voi lisatd myds “finally” kohdan, joka suoritetaan, tapahtuipa
virhe, tai ei. Poikkeuskasittely kannattaa opetella jo ohjelmoinnin alkuvaiheissa.
”finally” lohkoa ei sensijaan useinkaan kiyteta.

4 Boolean-operaattorit
C#:ssa on boolean tyyppinen muuttuja, joka sisiltda joko arvon true” (tosi) tai
“false” (epatosi). Boolean-operaattorilla suoritetaan laskutoimitus, jonka tulos on

joko ’true” tai “false”.

4.1: Vertailuoperaattorit

Operaattori Kuvaus Esimerkki Tulos, jos luku on
8

== Yhta suuri kuin luku==9 false

I= Eri suuri kuin luku!=8 false

< Pienempi kuin luku<9 true

<= Pienempi tai yhtasuuri kuin luku<=8 true

> Suurempi kuin luku>7 true

>= Suurempi tai yhtasuuri kuin luku>=9 false

4.2: Loogiset operaatorit

Operaattori Kuvaus Esimerkki Tulos, jos luku on
8
! Ei I(luku==8) false
AND Ja (luku==8) && (luku<12) true
&&
OR Tai (luku>12) || (luku<9) true

Loogisissa operaattoreissa voidaan kaytta joko AND tai sitd korvaavana && ja
yhtélailla OR operaattorin tilalla voidaan kéayttaa merkintéa || (16ytyy nappaimistolta
AltGr <).

4.3: Ehto-operaattori ?

Ehto-operaattorissaon kolme osaa: ehto, lausekel ja lauseke2 .Paluuarvo on
lausekkeen yksi arvo, jos lauske on tosi, ja lausekkeen kaksi arvo, jos lauseke on
epétosi.

Esimerkki 4.3.1:

int x=2, y=4;

int tulos = x < y ? (int)3 : (int)o6; //lopputuloksena
//tulos=3

tulos = x >= y ? (int)3 : (int)e6 //lopputuloksena
//tulos=6

Vertailulauseet
5.1: if lause

If (jos) lauseella verrataan ehtoja toisiinsa. Se toimii seuraavasti.
Esim. 5.1.1:

if (x<10) /lhuom. Ei puolipistetta lopussa

{

//suoritetaan, jos x<10

¥

else if (x<12) /lhuom. Ei puolipistetta lopussa

{

//suoritetaan, jos x>9 mutta pienempi kuin 12
¥
else if (x<=14)
{

/[suoritetaan, jos x>11 ja X on pienenpi tai yhtasuuri kuin 14

¥

else /lhuom. Ei puolipistettd lopussa

{

//suoritetaan, jos mikddn aiemmista tapauksista ei toteudu

¥

Aina lauseessa ei ole else if” eikd “’else” osioita ollenkaan.

5.1.1: Esimerkkiohjelma karkausvuosi
Anna ohjelmalle nimeksi Karkausvuosi

Karkausvuosi lasketaan seuraavasti: vuosi on karkausvuosi, jos se on neljalla
jaollinen. Kuitenkaan vuosi ei ole karkausvuosi, jos se on sadalla jaollinen. Vuosi on
kuitenkin aina karkausvuosi, jos se on 400:1la jaollinen. Huomioi kuitenkin, etta
ajanlaskutapa on valilla muuttunut, eiké kovin vanhasta ajanlaskusta ole tarkkaa
tietoa.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Karkausvuosi
{
class Program
{
static void Main(string[] args)

{

Console.WriteLine ("Anna vuosiluku: ");
try
{
int vuosi =
int.Parse (Console.ReadLine()) ;
if (vuosi % 4 == 0 && vuosi % 100 !'= 0 ||
vuosi $ 400 == 0)
Console.WritelLine ("Vuosi on
karkausvuosi.");
else
Console.WriteLine ("Vuosi ei ole
karkausvuosi.");

}

catch

{

Console.WriteLine ("Virheellinen syote.");
}
Console.Write ("\nPaina jotain ndppainta

jatkaaksesi...");
Console.ReadKey (true) ;

}
}
Ohjelmassa ei tarvita erikseen sulkuja lausekkeessa
((vuosi % 4 == 0 && vuosi % 100 !=0) || vuosi % 400 == 0), vaikka ne my0s
toimisivat, koska AND operaatiot suoritetaan ennen OR operaatioita, eli AND
operatioilla on korkeampi prioriteetti. Ohjelmassa nékyy hyvin myoés % (jakojd&dnnos)
operaation kayttd. Esim. 1600 % 4 = 0, kun taasen 1998 % 4 = 2,
Huomaa myads, ettd if ja else lauseiden jalkeen tulevaa koodia ei ole laitettu
aaltosulkeisiin. Se tosin toimisi, mutta kun lauseita seuraa vain yksi, aaltosulkeet
eivat ole pakollisia.

5.2: switch lause

Switch lause on toinen C Sharpin vertailulause. Yleensa switch lauseen voi korvata
if-else rakenteella, mutta usein switchlause on selkeénpi.

Switch lause toimii niin, ett4 switch avainsanalle annetaan vertailtava arvo, esim.
switch(numero). case lauseessa tarkistetaan, sopiiko ehto. default lauseeseen voi
laittaa toiminnon, joka suoritetaan, jos yksikdan case ehto ei toteudu. Hyvin usein
default kohta jatetdan pois. Kaikkien case lauseiden on paatyttava break kaskyyn,
poislukien esimerkeissé 5.2.1 ja 5.2.2 nékyvat tapaukset, joissa ehtoja on perékkéin
lueteltuna ennen suoritettavaa toimintoa. default paattyy aina break kéaskyyn.

5.2.1: Lausekkeen rakenne on:

switch(numero) //huom. Ei puolipistettd lopussa
{
case ehto: //kaksoispiste
/Nausekkeet
break;
case ehto2:
/ltoiset lausekkeet
break;
case ehto3:
case ehto4:
case ehtob:
/Ikolmannet lauseet
break;
default: //kaksoispiste
//suoritetaan, jos mikaan aienpi ehto ei toteudu
//jatetdan useissa tpauksissa pois

¥

5.2.2: Esimerkkiohjelma kuukausien péivien lukumaarasta
Anna ohelmalle nimeksi KuukausienPaivat

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace KuukausienPaivat

{

class Program

{

static void Main(string[] args)

int pvm;
Console.WritelLine ("Anna kuukauden numero:");
try
{
pvmm = int.Parse(Console.ReadLine());
switch (pvm)
{

case 2:
Console.Writeline ("Kuukaudessa on
28 paivaa. Karkausvuonna 29.");
break;
case 4:
case 6:
case 9:
case 11:
Console.Writeline ("Kuukaudessa on
30 paivaa");
break;
default:
Console.WritelLine ("Kuukaudessa on
31 paivaa");
break;

}

catch

{

Console.WriteLine ("Virheellinen syote.");

}

Console.Write ("\nPaina jotain ndppainta

jatkaaksesi...");
Console.ReadKey (true) ;

}

switch rakenteen olisi voinut toteuttaa if-else rakenteella seuraavasti:

if (pvm==4 || pvm::6 ” pvm==9 ” me==ll)
Console.WriteLine("Kuukaudessa on 30 paivaa");
else if (pvm==2)
Console.WriteLine("Kuukaudessa on 28 paivaa. Karkausvuonna 29.");
else
Console.WriteLine("Kuukaudessa on 31 pdivéaa");

swich rakenne on kuitenkin tassa tapauksessa selkednpi. Tdma ohjelma ei viel tutki
sitd mahdollisuutta, ettd k&yttdja antaa kuukaudeksi pienemman numeron kuin yksi,
tai suuremman kuin 12.

switch lausekkeen ehto voi olla my6s merkki (char) tai merkkijono (string). Tallgin
vertailu tapahtuu seuraavasti:

5.2.3: Esimerkkiohjelma merkin vertaaminen
Anna ohjelmalle nimeksi Vokaali

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Vokaali

{

class Program
{
static void Main(string[] args)
{
char merkki;
Console.WritelLine ("Anna jokin kirjain:");
try
{

merkki = char.Parse (Console.ReadLine())
switch (merkki)

{

case 'a
case 'e':
case 'i':
case 'o':
case 'u':
case 'y':

Console.WritelLine ("Merkki on

vokaali.");

break;
case 'a':
case 'o':

Console.WritelLine ("Merkki on
vokaali ja aakkoéonen.");
break;
default:
Console.WriteLine ("Merkki on

konsonantti, numero tai erikoismerkki.");
break;
}
}
catch
{
Console.WriteLine ("Virheellinen syote.
Syota vain yksi kirjain.");

}

Console.Write ("\nPaina Jjotain nappainta
Jatkaaksesi...");
Console.ReadKey (true) ;

}
}

Ohjelmassa nakyy myos tyyppimuunnos char.Parse() jolla muutetaan string muuttuja
char muotoon.

My0s tdssd tarvitaan “try/catch” rakennetta tarkistukseen, tai muuten tapahtuu virhe,
jos kaytdja syottaa useamman merkin.

5.2.4: Esimerkkiohjelma merkijonosta switch lauseessa

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Vuodenaika
{
class Program
{
static void Main(string[] args)
{
string kuukausi;
Console.Write ("Anna kuukauden nimi: ");
kuukausi=Console.ReadLine () ;
switch (kuukausi)
{
case "tammikuu":
case "helmikuu":
case "joulukuu":
Console.WritelLine ("Kuukausi on
talvikuukausi.");

break;
case "maaliskuu":
case "huhtikuu":
case "toukokuu":
Console.WritelLine ("Kuukausi on
kevatkuukausi.");
break;
case "kesakuu":
case "heinakuu":
case "elokuu":
Console.WritelLine ("Kuukausi on
kesakuukausi.");
break;
case "syyskuu'":
case "lokakuu":
case "marraskuu":
Console.WritelLine ("Kuukausi on
syksykuukausi.");
break;
default:
Console.WriteLine ("Annoit kuukauden
nimen vaarin.");
break;

}

Console.Write ("\nPaina jotain ndppainta
Jjatkaaksesi...");
Console.ReadKey (true) ;

}

Ohjelmassa nakyy myds Console.Write() metodin kaytto, joka ei vaihda rivié
automaattisesti kaskyn jalkeen, kuten Console.WriteLine() metodi.
Poikeuskasittelijaa (try/catch) ei tassa tapauksessa tarvita, koska string muuttujaan
kelpaavat syotteend kaikki merkit ja merkkijonot.

6 Toistolauseet
6.1: for silmukka
for silmukka toistaa ehdossa mainitun maaran silmukan sisassa olevia lausekkeita.
6.1.1: Rakenne

for(alkuehto,loppuehto,laskurin kasvatus) /lhuom. Ei puolipistetta
lopussa

{
k

Esim. 6.1.2:

/lausekkeet;

for (int 1=0;i<50;i++)
{

//suoritettavat toiminnot;
//silmukka suoritetaan 50 kertaa ja saa arvot 0...49

¥

Esim. 6.1.3: Silmukka voi olla myds véheneva

inti;
for(i=50;i>0;i--)
//Suoritettavat lausekkeet, silmukka suoritetaan 50 kertaa ja saa arvot 50...1

Huom. for silmukan jalkeen ei tarvitse laittaa aaltosulkuja, jos suoritettavia lauseita
on vain yksi

for silmukan lausekkeiden suoritusjarjestys on seuraava. Suluissa suoritusvaihe
numerona.

for(aloitusosa(1);ehto(2);kasvatus(4))
{

lauseet(3)

¥

Lauseet siis suoritetaan ennen kasvatusvaihetta. Alustusosa suoritetaan vain kerran,
mutta muut osat toistuvasti. Ohjelman kulku siis on 1,2,3,4,2,3,4,2,3,4.

Jos for lause on:

for(i=0;i<2;i++)
{

/llauseet

k

lauseet suoritetaan kaksi kertaa, eli i saa arvot 0 ja 1.

6.1.4: Esimerkkiohjelma for silmukasta ja satunnaislukugeneraattorista

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ForEsimerkki

{

class Program
{
static void Main(string[] args)
{
int i, arvottu;
Random satluku = new Random(); //Luodaan
//satunnaisluku olio satluku
for (1 = 1; i < 21; i++)
{
arvottu = satluku.Next (1,101); //arvotaan
//1luku valiltia 1-101.

//arvottu vol saada kokonaislukuarvon 1...100
Console.WritelLine (i + ". satunnaisluku
on: " + arvottu):;

}

Console.Write ("\nPaina jotain ndppainta
Jatkaaksesi...");
Console.ReadKey (true) ;

}

Ohjelmassa on luotu satunnaislukuolio satluku. Olioista ei tassa vaiheessa tarvitse
tietdd enemman. Mainittakoon kuitenkin, ettd olio luodaan new avainsanalla.
Satunnaisluvun kaytostd on enemman luvussa 17 Satunnaisluku”.

6.1.5: Sisakkaiset for silmukat

for silmukoita voi luoda myds sisdkkaisiksi, mika on hyvin tavallista.
Tyyppiesimerkki on taulukko, jossa on y ja x koordinaatit. Useanpiakin sisakkaisié
silmukoita tarvitaan ajoittain.

Esim. 6.1.5.1: Kaksiulotteinen for silmukka

intij;
for (i=0;i<10;i++) for (j=20;j<40;j++) //suoritettava lause;

Huomaa, ettd jos for lauseet ovat perdkkain, ja suoritettavia lauseita vain yksi,
aaltosulkeita ei tarvita.

Aaltosulkeita kaytetaan, jos lauseita on enemman. Huomaa, etté laskurin luku voi olla
mita vain, kuten seuraavassa esimerkissé j :n arvo 20...39.

inti,j;
for (i=0;i<10;i++)
{
[/Isuoritettavia lauseita
for (j=20;j<40;j++)
{
[/Isuoritettavia lauseita;
//lisaa lauseita
}
}
6.1.5: Esimerkkiohjelma sisakkasista silmukoista

Tyypillisinpid esimerkkejé sisakkaisesté silmukasta on kertotaulu, joka on
kaksiulotteinen taulukko.
Seuraavassa kertotaulu lasku- ja tulostusohjelma.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Kertotaulu

{

class Program

{

static void Main(string[] args)

{

int 1, j;

for (1 = 1; i < 11; i++)
{
for (3 = 1; 73 < 11; j++)
{
//tulostetaan kertotaulu. \t on
//vaakasuuntainen sarkain
//Jjonka avulla rivit saadaan kohdalleen
//pystysarkain on \v
Console.Write(j * 1 + "\t");
}
//tulostetaan rivin vaihto
Console.WriteLine () ;

}

Console.Write ("\nPaina jotain ndppainta
Jjatkaaksesi...");
Console.ReadKey (true) ;

}
}
6.2: while silmukka
while silmukan rakenne on seuraava:

while(ehto)
{

/Isuoritettavia lauseita

¥

eli esim.

int i=0;

while(i<10)

{
//suoritettavia lauseita
//suoritetaan téssa tapauksessa 10 kertaa
I++;

,

6.2.1: Esimerkkiohjelma kertoma while lauseella
Esim. kuuden kertoma lasketaan kertomalla 2*3*4*5%*6.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Kertoma
{
class Program
{
static void Main(string[] args)
{
int luku=-1;
while (luku != 0)
{
try
{
Console.WritelLine ("Anna kokonaisluku
valilta 1-150, jonka kertoma lasketaan.");
Console.Write("Syota 0 kun haluat
lopettaa: ")
luku =
int.Parse (Console.ReadLine());
if (luku > 150)
{
Console.WriteLine ("Luku on liian
suuri kertoman laskemiseen tdlld ohjelmalla.\n");
continue;
}
if (luku < 0)
{
Console.WriteLine ("Luku on
negatiivinen.\n");
continue;
}
double kertoma = 1;
int 1 = 1;
while (i <= luku)
{
kertoma = kertoma * 1i;
i++;
}
if (luku !'= 0)

Console.WriteLine ("Luvun " + luku + " kertoma on " +
kertoma) ;

}

catch

{

Console.WritelLine ("Virheellinen
syote.");

}

Ohjelmassa on myos continue lause, jolla voi palata silmukan alkuun, tassa
tapauksessa while(luku!=0) kohtaan.

while(luku!=0) tai esim. while(merkki!="q” || merkki!="Q”) rakennetta kaytetian
silmukan toistamiseen. while(merkki!="q”) rakenne esim. toistaa silmukkaa niin

99 99

kauan, kunnes kayttija syottda ”q” kirjaimen.
6.3: do-while silmukka

do-while silmukka on lopetusehtoinen. Sita kaytetdadn while silmukan tapaan, mutta
lauseen ehto tarkistetaan vasta ilmukan lopussa. Siitd johtuen do-while silmukka
toistetaan aina vahintdan yhden kerran. Jos alkuehto ei toteudu, toisinaan while
silmukkaa ei suoriteta lainkaan.

do-while silmukan rakenne:

do
{

/Isuoritettavat lauseet

¥
while(ehto)

7 Hyppylauseet
7.1: continue

continue kaskylla voidaan hypéaté esim. switch-case tai while silmukan alkuun. T&sta
oli esimerkki 6.2.1 esimerkkiohjelmassa.

7.2: break

break kaskylla voi katkaista silmukan suorittamisen. Tall6in ohjelma siirtyy
suorittamaan lauseita silmukan jéalkeiselta rivilta.

7.3: goto

goto kaskylla voi hypéta ohjelmassa toisen paikkaa merkityyn pointteriin.
Esim.

alku:
/Isuoritettavia lauseita
goto alku;

tai esim.

loop:
//suoritettavia lauseita
if (ehto<10) goto loop;

goto lauseen kayttoa pidetaan erittdin huonona ohjemointitapana, ja se aiheuttaa
sekavia, ja jalkeen péin vaikeasti luettavia ohjelmia. Yleensa goto lauseen kéytto
kertoo huonosti rakennellusta ohjelmasta.

8 Visual Studion kaytosta
8.1: Solution Explorer

On mahdollista, ettd koodi haviaa nékyvista. Loydéat koodin sivulla oikealla olevasta
’Solution Explorer” valikosta. Koodin saat nékyviin klikkaamalla .cs paitteista
luokan nimed. Néissé esimerkkiohjelmissa minulla on ollut luokan nimena oletus, eli
”Program.cs”.

8.2: Ohjelman tallennus

Koko ohjelmaprojektisi saat tallennettua ’File/ Save All” komennolla. Ohjelman
nimeksi tulee oletuksena ohjelmaa luodessasi antamasi nimi. Voi valita, mihin
kansioon projektin tallennat. Oletusarvoisesti projekti tallentuu kansioon ”Visual
Studio 2010/ Projects”.

8.3: Ohjelman ajaminen

Ohjelma ajetaan ”Debug/ Start Debugging” kohdasta. ”Debug/ Step Into” toiminnolla
voit ajaa ohjelmaa rivi kerrallaan, ja ndet, miten ohjelma etenee koodissa. Tasta voi
olla hyotyé virheiden etsimisessé. Klikkailessasi”’Step Into” valintaa, ohjelma etenee
askeltaen. Jos ajat ohjelmaa ’Step Into” toiminnolla, voi lopettaa ajamisen
valitsemalla ”Debug/ Stop Debugging”.

8.4: Ohjelman julkaisu

Valitse Visual Studiosta ”project/publish”. Voit nyt tallentaa ohjelman haluamaasi
kansioon, tai tyopddalle. Ohjelma tekee pikakuvakkeen, ja sen voi nyt myos siirtaa
toiseen tietokoneeseen esim. muistitikun avulla. Ensimmaiseld ajokerralla ohjelma on
asennettava, joka tapahtuu pikakuvaketta tuplaklkkaamalla, jolloin asennus
kaynnistyy.

9 Taulukot

Taulukot voivat olla joko yksi- tai moniulotteisia ja mita tahansa perustietotyypeisté
(esim. int, double, string, char).

9.1: Yksiulotteinen taulukko
Yksiulotteinen taulukko luodaan seuraavasti:

tyyppi [] taulukon_nimi
taulukon_nimi = new tyyppi[taulukon_koko]

new operaattorilla varataan taulukolle muistitila

eli esim. int [] koordinantti;
koordinantti = new int[20];
/taulukon voi my6s méaritella samala kun varaa tilan
int [] koordinantti = new int[2};

string [] taulukon_nimi = new string[maara]
eli esim. string [] nimet= new string[8];

Taulukot voi myos alustaa esittelyn yhteydessa seuraavasti:
int [] arvosanat = {1,2,3,4,5}; //C# varaa automaattisesti oikean muistiméaran

string [] nimet = new string[3];
/[alustetaan yksitellen
nimet[0] = "Matti”;

nimet[1] = "Kalle”;

nimet[2] = Ville”;

\oi tehdd myds nain:

string[] nimet = { "Matti", "Kalle" , "Ville" }; //C# varaa automaattisesti oikean
muistim&éran

char [] vokaali = {'a','e','i','0",'u’,'y",'4,'0'}; //C# varaa automaattisesti oikean
muistim&éran

Huomaa, ettd taulukko alkaa aina alkiosta nolla, eli ”int [3] arvosanat” méérittely
varaa taulukon paikat:

arvosanat[0];

arvosanat[1];

arvosanat[2];

9.2: Moniulotteinen taulukko

Kaksiulotteista taulukkoa voi verrata koordinaatistoon, jossa on korkeus ja leveys.
Kolmiulotteisessa on vieléd syvyys. Yksi ja kaksiulotteisia taulukoita k&ytetéén eniten,
mutta periaateessa tietokone voi muodstaa vaikka kuusiulotteisen taulukon, jonka
hahmottaminen on vaikeaa. Itse olen joskus kadyttanyt neliulotteista taulukkoa, mutta
harvoin kdytetaan yli kaksi- tai kolmiulotteisia taulukkoja.

Moniulotteista taulukkoa voisi havainnollistaa monessa kéytossa myds seuraavasti:

alkio[x,y,z]

jokaista x alkiota vastaa y kappaletta ominaisuuksia ja jokaista y alkiota kohti on z
kappaletta lisdominaisuuksia, eli x alkiolla on y*z lisdominaisuutta.

Esimerkiksi voisi olla kysymyskaavake. Taulukon alkiossa[x] olisi kysymysten
maaré. Alkiossa [y] olisi tieto, onko kysymyksessa kaksi-, kolme- vai nelja
vastausvaihtoehtoa (a,b?, a,b,c?, a,b,c,d?). Kaavakkeita tasaen voisi olla kolme
erilaista samaa henkiloa kohti, ja haluttaisiin tallentaa tiedot samaan taulukkoon,
mutta taulkkoon pitdisi taltioida tieto, mihin kaavakkeeseen vastaus kuuluu, eli
tarvittaisiin kolmas ulottuvuus z. Tama edellytté4 ettd kaikissa kaavakkeissa on
saman verran kysymyksia. Tallaisen ohjelman tekemisessa kannattaisi tosin harkita
sisakkaisté taulukkoa, joka esitelladn kohdassa 9.3.

Tallgin luotaisiin taulukko: alkio[x][y][z] jonka muistinvaraus voisi olla vaikka
seuraava:

int [,,] alkio = new int[kysymysten _maara,4,3]
eli esim. int[,,] = new int[20,4,3];
9.2.1: Esimerkkiohjelma yksi- ja moniulotteisesta taulukosta

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Arvosanat
{
class Program
{
static void Main(string[] args)
{
int 1, j, x;
Console.Write ("Kuinka monta oppilasta
kurssilla oli? ");

try

x = int.Parse(Console.ReadLine())
//tédssa x kuvaa oppilaiden lukum&araa,
//joka kysytddn kayttiajalta

string[] nimet = new string([x];

int[,] arvosanat = new int[x, 3];
//Kysytdan oppilaan nimi ja arvosanat
for (1 = 0; 1 < x; i++)

{

Console.Write ("Anna oppilaan nimi:

nimet[i1] = Console.ReadLine () ;
for (3 = 0; J < 3; j++)
{

Console.Write ("Anna kurssin " +
(3 + 1) + " arvosana: ");

arvosanat([i, 7J] =
int.Parse (Console.ReadLine()) ;

}
}

//Tulostetaan tiedot
for (1 = 0; 1 < x; 1i++)
{
Console.Write ("\nOppilaan " +
nimet[i] + " arvosanat:");
for (3J = 0; 73 < 3; j++)
Console.Write ("\t" + arvosanat|[i,

}

catch

{

Console.WriteLine ("Virheellinen syote");

}

Console.WriteLine ("\n\nPaina Jjotain nappainta
jatkaaksesi...");
Console.ReadKey (true) ;

}
9.3: Sisakkainen taulukko

Sisdkkaisissa taulukoissa on taulukoita alkioina. Sisakkainen taulu esitell&én ja
luodaan seuraavasti:

tyyppi [][]...[] taulukon_nimi = new tyyppi[m][n]...[]

[] merkkien lukumé&ara méaarittaa sisdkkaisen taulukon taulualkioiden lukumé&éaran.
Viimeisessé [] kohdassa ei ole mitddn numeroa, vaan se voi vaihdella eri
ulottuvuuksilla ja maarétaén erikseen.

9.3.1: Esimerkkiohjelma sisakkaisista taulukoista

Seuraavassa tehtdvéassa voisi kyseessa olla kolme eri koepaperia, joissa kaikissa on
eri madré tehtavia. Ensimmaisesa paperissa on 4 tehtévad, toisessa 2 tehtavaa ja
kolmannessa 3 tehtavéaa.

Jokainen tehtéva on sitten arvosteltu asteikolla 1-5.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace SisakkainenTaulukko

{

class Program

{

static void Main (string[] args)

{

int i, J;

//maaritellaan sisdakkainen taulukko
//téssd kaksiulotteisessa sisakkaisssa

//talukossa
//on kolme taulukkoa alkiona
int[][] numerot = new int[3][];

//méddritellddn sisdkkdisen taulukon
//ensimmdinen rivi

//Jjoka on nelialkioinen taulukko
numerot [0] = new int[4];

//alustetaan taulukko
numerot [0] [0] = 4;
numerot [0] [1] = 3;
numerot [0] [2] = 3;

numerot [0] [3] = 4;

//maadritellddn toinen rivi
numerot[l] = new int[2];

//alustetaan toilnen rivi
numerot [1][0] = 5;
numerot[1][1] = 2;

//mddritellddn kolmas rivi, joka on myods
//taulukko

//tdssada myds toinen tapa alustaa taulukot
//taulukossa on kolme alkiota

numerot[2] = new int[] { 3, 3, 4 };

for (i1=0;i<3;i++) {
for (j = 0; j < numerot[i].Length; j++) {
Console.Write ("\t" + numerot[i][]J]);

Console.WritelLine () ;

}

Console.Write ("\nPaina jotain nappainta
Jatkaaksesi...");
Console.ReadKey (true) ;

Tassa ei ole vield huomioitu, ettd oppilaita on todennédkdisesti useampia. Kymmenelle
oppilaalle sisékkainen taulukko pitaisi esitell& seuraavasti:

//méaritetdadn kolmiulotteinen sisakkadinen taulukko
int[][][] numerot2= new int[3][]11[1];

//méaritetdadn sisakkdiseen taulukkoon
//kaksiulotteinen taulukko
numerot2[0] = new int[4]1[];

//sijoitus ensimmdisen opiskelijan
//ensimmdiseen numeroon
numerot2[0] [0] [0] = 4;

//sijoitus viidennen oppilaan kolmanteen

//numeroon

//muistathan: taulukko alkaa alkiosta 0

//Jjoten luku nelja viittaa viidenteen

//arvoon

//ja kaksi kolmanteen arvoon
numerot2[0][2][4] = 3;

10 strig lauseista ja char tyypista

strig lause on merkkijono, joka on myods samalla taulukko. Esim. jos on lause string
auto="Volvo” voidaan kirjaimeen ”V” viitata auto[0] ja ”’1” auto[2]. Merkkijonoja
voi liittdd + operaattorilla, esim. uusi="asunto” + ”vaunu” operaation jilkeen uusi on
asuntovaunu’.

Isot ja pienet kirjaimet ovat eri merkkeja. Jos kirjoitat Q" se on ihan eri asia kuin
”q”. Usein on erilaisissa tarkistuksissa kdytdnnollistd muuttaa ensin kirjaimet isoiksi,
joka tapahtuu metodilla ToUpper() eli esim. lauselsoilla = lause. ToUpper() .
Merkkijonon voi vastaavasti muuttaa pieniksi kirjaimiksi ToLower() metodilla
sana=sana.ToLower() . Merkkijonon pituutta voi tutkia Lenght kaskylIa,

eli esim. pituus = sanat.Length;
char tyypilla méaritellaan yksittdinen merkki. char vie muistissa yhden tavun.

Esimerkki: char merkki ='k’;
/lchar taulukko
char [] kirjain={'a','b",' c¢',"d" };
//tai alustamattomana esim.
char [] merkit = new char[20];
/I NET tyyppi on Char eli isolla Kkirjoitettuna

/[char muuttujallevoidaan myds antaa unicode koodi. Tassa esimerkissé n
Kirjaimen

/lkoodi, joka on 006E

char merkki = \uOOGE";

Hyva lista unicode merkeista 10ytyy Wikipediasta osoitteesta:
http://en.wikipedia.org/wiki/List_of Unicode_characters

Unicode merkistdssa on paljon muutakin kuin vain kirjaimia, joten kannattaa
tutustua.

Huomaathan, ettd string tyypissa kaytetddn lainausmerkkeja ja char tyypissa
heittomerkkia " .

string lauseen voi paloitella sanoiksi Split() metodilla.
string lause = ”C# ohjelmointi on hauskaa.”;
string[] sanat = lause.Split(); //paloittelee string taulukkoon sanat

nyt esim. sanat[0]="C#” ja sanat[1]="ohjelmointi”

10.1: Esimerkkiohjelma merkkijonojen késittelysta: siansaksa
Ohjelma muuttaa teksti& seuraavasti siansaksaksi:

http://en.wikipedia.org/wiki/List_of_Unicode_characters

-jos sana alkaa vokaalilla lisatdan sanan loppuun way
-jos sana alkaa konsonantilla sirretddn sanan ensimmainen kirjain sanan loppuun, ja
lisataan
loppuun ay
-jos alkukirjain on numero tai erikoismerkki, ohjelma ei tee siind mit&én

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Siansaksa

{

class Program
{
static void Main(string[] args)
{
string lause="";
string lause?2;
string[] sanat;
Char[] kon — { 'b', 'C', 'd', 'f', 'g', 'h',
j'['k'['l'['mV, 'nV, 'p', 'q', 'r', 'S', 't', 'V',
'W', 'X', 'Z' };
while (lause != "quit") //toistetaan niin
//kauan, ettd kayttaja syottaa quit
{

int 1, j, laskuri = 0, tyyppi=0;

string lopLause = "";

Console.WritelLine ("\nAnna
englanninkielinen lause, joka muutetaan
siansaksaksi.\nAnna quit lopettaaksesi:\n");

lause=Console.ReadLine () ;

sanat = lause.Split(); //paloitellaan
//lause sanoiksi sanat taulukkoon

laskuri = sanat.Length; //tutkitaan
//laskuri muuttujaan sanat[] taulukon sanojen lukum&éadra

lause2 = lause.ToLower(); //tallennetaan
//lause2 muuttujaan lause pienilld kirjaimilla

string[] sanat2 = lause2.Split();
//paloitellaan myds lause2 sanoiksi

for (1 = 0; i < laskuri; i++)
{

tyyppi = 0;
string lopSanat = "";

//tehddéan kaikki tarkistukset pieniksi

//kirjaimiksi muutettuna

//ndin toiminto on sama, alkoipa sana

//isoilla tai pienilld kirjaimilla

string sana2 = sanat2f[i];

char merkki = sanaz2[0];

switch (merkki) //tarkistetaan, onko
//alkukirjain vokaali, Jjolloin tyyppi=1

{

case 'a':
case '
case '
case '
case '

case

V.

-
.

-
.

S O B0 Y

': tyyppi = 1;
break;

}

if (tyyppi !'= 1) //jos alkukirjain ei
//ole vokaalil, tarkistetaan onko konsonantti

{

//jos alkukirjain on konsonantti, tyyppi=2
for (3 = 0; 3 < 20; 3++) 1if

(merkki == kon[]]) tyyppli = 2;

}

/*jos alkukirjain vokaali, lisataan

loppuun "way"

huomioi: tarkistukset tehdaan
pieniksi kirjaimisi muutetulla muuttujalla,

mutta sijoitettaessa lopulliseen
muotoon, kaytetdaan alkuperaista lausetta

nain lopullisessa lauseessa sailyvat
isot ja pienet alkukirjaimet

lopSanat on muuttuja, johon
sijoitetaan lopullinen sana

*/

if (tyyppi == 1) lopSanat = sanat[i] +
"Way H;

if (tyyppi == 2)

{

//jos alkukirjain on konsonantti,
//1lisatdan loppuun sanan alkukirjain ja "ay"
string lopSanat?2 = sanat[i] +

sanat[i] [0] + "ay ";

//tutkitaan sanan pituus, ja lisataan kolme
// (ay+loppukirjain=3)
//poistetaan alkukirjain siirtama&lla merkkeja
//yksi pykala vasemmalle
//eli merkki[2] paikalle tulee merkki[3]
for (j = 0; j < sanat[i].Length+3;
Jj++) lopSanat = lopSanat + lopSanat2[j + 1];
}

//jos alkukirjain on Jjotain muuta kuin

//kirjain

//eli numero tail erikoismerkki, ei

//tehdd mitdan muutoksia

if (tyyppi !'= 1 && tyyppi != 2)
lopSanat = sanat([i];

//lopLause on lopullinen lause, johon
//sanat perdjdlkeen liitet&an
lopLause = lopLlause + lopSanat;

}

//tulostetaan lopullinen lause
Console.WritelLine (lopLause);

11 Lueteltu tyyppi enum ja vakio const

Luetellun tyypin enum avulla luodaan yhteen kuuluvista vakioista lista. Tyypin
oletusarvo on int, mutta silla voi kuitenkin kayttdd myds muita kokonaislukuja.
Oletusarvoisesti arvot alkavat luvusta nolla, mutta sille voidaan my0s antaa
aloitusarvo, esim. yksi. Jos annetaan aloitusarvoksi yksi, seuraava vakio saa
arvokseen kaksi, seuraava kolme jne. Kaikille vakioille voidaan myds méaéritell&
erikseen arvo. Huomaa, ettd enum maéaritell&an class osiossa. Jos yritat sijoittaa enum
maéaritteen main() lohkoon, tapahtuu virhe.

const madreelld luodaan vakio. Vakion arvoa ei voi ohjelman aikana muuttaa. Vakio
voi olla mika tahansa lukutyyppi, merkki tai merkkijono, esim. ”Kylla”.

11.1: Esimerkkitehtdva enum lauseesta ja const vakiosta

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace EnumJaConstHarjoitus

{
class Program
{
//huomaa, puolipistettd lopussa ei tarvita,
//vaikkei se olekaan virhe

enum vuodenaika { kevat = 1, kesa, syksy, talvi }
enum mitat { mm = 1, cm = 10, m = 1000, km =
1000000 1}

static void Main(string[] args)

{

const double pii = 3.14; //méaritetddn pii
//vakioksi ja annetaan arvo

int r;

double ympAla;

try

{

Console.Write ("Anna ympyran sade
senttimetreina: ");

r = int.Parse(Console.ReadLine()) ;

ympAla = pii * r * r;

double ala = ympAla * (int)mitat.cm;

//tehtava tyyppimuunnos
Console.Writeline ("Ympyran ala

millimetreind antamallasi sateella on {0}.", ala);

}

catch

{

Console.WriteLine ("Virheellinen sydote.");

}

//Tassakin tehtava tyyppimuunnos

Console.WriteLine ("\nSyksyn numero on
kevaasta laskettuna " + (int)vuodenaika.syksy);

Console.Write ("\nPaina jotain nadppainta
Jatkaaksesi...");
Console.ReadKey (true) ;

12 foreach() toistolause

foreach toistolauseella kaydéan taulukoiden ja kokoelmien arvot yksi kerrallaan lapi.
foreach lauseessa kéytetd&dn apumuuttujaa, joka saa yhden taulukon arvon vuorollaan
arvoksi. Huomaa, ettd apumuuttuja on méaariteltava foreach lauseessa.

foreach lauseen syntaksi on:

foreach(tyyppi apumuuttuja in taulukon_nimi)

{

/Isuoritettavia lauseita

¥
12.1: Esimerkkiohjelma foreach lauseesta

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ForeachHarjoitus
{
class Program
{
static void Main(string[] args)
{
string lause;
string[] sanat;
do
{
int laskuri = 0;
Console.WriteLine ("Anna paloiteltava
lause. Anna quit, kun haluat lopettaa.");
lause = Console.ReadLine () ;
Console.WriteLine();
sanat = lause.Split(); //paloitellaan
//lause sanoiksi
foreach (string sana in sanat) //kaydaan
//taulukko sanat léapi

Console.Writeline (sana) ;

}
Console.WriteLine ("\nSanoja oli " +
sanat.Length + " kappaletta.\n");

}

while (lause != "quit");

}

Edellisessa esimerkssa kaytiin paloiteltiin lause string
taulukoksi,ja kaytiin lapi. foreach lauseella voidaan
yvhta hyvin kayda lédpi char tai numeerisia talukoita.

Esim. double [] a={1.6,2.1,4,3};
foreach (double apu in a)

{

//suoritettavat lauseet

}

tai: char [] kirjain={'a','k','s'};
foreach (char apukirjain in kirjain)
{

//suoritettavat lauseet

}

13 Ohjausmerkit

Ohjausmerkit, jotka toimivat tulostuslauseissa ja -kentissa. Huomaathan, etta kun
kenoviiva \ on itsessddn merkki ohjauksesta, niin jos sinun on tulostettava kenoviiva,
joudut kirjoittamaan sen tuplana, eli \\ . Samoin, kun lainausmerkki ” ja heittomerkki '
sisaltavat ohjaustietoa, niiden tulostamiseen tarvitset eteen kenoviivan, joka kumoaa

ohjaustarkoituksen.

13.1: Taulukko ohjausmerkit

Ohjausmerkki Kuvaus
\' Heittomerkki
\” Lainausmerkki
\\ Kenoviiva
\0 Null-merkki (ei ole sama kuin C Sharpin null arvo)
\a Varoitus (Alert)
\b Askelpalautus
\f Sivun kelus (Form feed)
\n Rivin vaihto
\r Vaunun palautus (Carriage return)
\t Vaakasuorainen sarkain
\v Pystysarkain

14 Paivamaaran ja ajan ottaminen tietokoneen kellosta

Seuraava ohjelma tulostaa paivamaarén ja kellonajan tietokoneen kellosta otettuna.
Joskus voi olla tarpeen kayttad myds millisekunteja, joiden tulostamisesta on myos
esimerkissa.

14.1: Esimerkkiohjelma aikamé&érasta

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Aikamaara
{
class Program
{
static void Main(string[] args)
{
int vuosi, kuukausi, paiva, tunti, minuutti,
sekuntti, millisekuntti;
System.DateTime aika = System.DateTime.Now;
vuosi = aika.Year;
kuukausi = aika.Month;
paiva = aika.Day;
tunti = aika.Hour;
minuutti = aika.Minute;
sekuntti = aika.Second;
millisekuntti = aika.Millisecond;
Console.WritelLine ("Paivamaara on
"." + kuukausi + "." + vuosi);
Console.WriteLine ("Kellonaika on " + tunti +
""" 4+ minuutti + "." 4+ sekuntti);
Console.WriteLine ("Millisekunnit ovat: " +
millisekuntti);

"

+ paiva +

//padivamddran ja kellonajan voil tulostaa myds nain
//silloin mitddn ylla olevia maaritelmia ei tarvita
//vaan tama toimii itsendisena
Console.WriteLine ("\nNyt on " +
DateTime.Now.ToString()),

Console.Write ("\nPaina jotain ndppainta jatkaaksesi...");
Console.ReadKey (true) ;

}

15 Matemaattisia operaatioita

C#:ssa on Math luokka, jossa on paljon hyodyllisid matemaattisia toimintoja, kuten
potenssiin korotus, nelidjuuri ja trigonometriset funktiot. Siell4& on myds piin ja
luonnollisen luvun e arvot.

15.1: Esimerkkiohjelma matemaattisista operaatioista

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace MatematiikkaToimintoja
{
class Program

{
static void Main(string[] args)
{
//piin arvon tulostus
double pii=Math.PI;
Console.WritelLine ("Piin arvo on " + pii);

//luonollisen luvun e tulostus

double e=Math.E;

Console.WriteLine ("Luonollisen luvun e arvo
on " 4+ e);

//nelidéjuuri lasketaan seuraavasti

double nelJuuri=Math.Sqrt (12);

Console.WriteLine ("Luvun 12 nelidjuuri on " +
nelJuuri) ;

//potenssiin korotus tapahtuu seuraavasti
double a=3, b=4, r=14;
double pot = Math.Pow(a, b);
Console.WritelLine("3%"4 (3 potenssiin 4) on "
+ pot);

Console.WritelLine ("Ympyran, jonka sade on 14
(kaava pii*r”*2), pinta-ala on " + Math.PI * Math.Pow(r,

2));

//trignometriset funktiot
//luodaan vakio n, jolla desimaaliluvun saa
//radiaaneiksi

//C# kayttaa trigonometrisissa laskuissa
//radiaaneja
const double n = Math.PI / 180;

//sini

double sin = Math.Sin(n*30);

Console.WriteLine ("Luvun 30 sini on " + sin);

//cosini

double cos = Math.Cos (n*40);

Console.WriteLine ("Luvun 40 cosini on " +
cos) ;

//tangentti

double tan=Math.Tan (n*80) ;

Console.WriteLine ("Luvun 80 tangentti on " +
tan) ;

//arkusfuktiot

//arkus sini eli sin -1

double sinM = Math.Asin (0.8)/n;

Console.WriteLine ("Kulma sinin arvolle 0,8 on
" + sinM);

//arkus cos eli cos -1

double cosM = Math.Acos (0.25)/n;

Console.WriteLine ("Kulma cosinin arvolle 0,25
on " 4+ cosM);

//arkus tan eli tan -1

double tanM = Math.Atan(8)/n;

Console.Writeline ("Kulma tangentin arvolle 8
on " + tanM);

//luonnollinen logaritmi

double 1n = Math.Log(3);

Console.Writeline ("Luonnollinen logaritmi
luvulle 3 on " +1n);

//kantaluku kantainen logaritmi

//syntaksi Math.Log(kantaluku, numerus)

double log = Math.Log(3,6);

Console.WritelLine ("Logaritmi 3 luvulle 6 on "
+ log);

//kymmen kantainen logaritmi

//syntaksi Math.LoglO (numerus)

double x = Math.Logl0(8);

Console.WritelLine ("Logaritmi 10 luvulle 8 on
"t ox);

Console.Write ("\nPaina jotain nadppainta

jatkaaksesi...");
Console.ReadKey (true) ;

}

16 bool tyyppi
bool tyypin muuttuja saa arvon joko true (tosi) tai false (epatosi).
Esimerkki:
bool n, m;

n = true;

m=false;

NET muoto on isolla kirjaimella kirjoitettuna Boolean
bool tyypin koko muistissa on yksi tavu.

Esimerkki 16.1: bool tyyppi ja ehto operaattori ?
bool wvastaus;

int x=2, y=4;

vastaus = (x <= y) ? true : false; //vastaus saa arvon
true

17 Satunnaisluku

Satunnaisluku luodaan Random luokasta new avainsanalla, ja sitd kaytetadan Next()
metodilla. Alla oleva esimerkki valaisee asiaa. Next() metodille anntetaan kaksi
lukua, joiden valista sanuttaisluvut arvotaan. Lukujen on oltava kokonaislukuja,
mutta miinusmerkkiset kelpaavat. Ensimmaisen luvun on oltava pienempi kuin
toisen. Ohjelma ottaa ensimmaisen arvotun luvun kayttoon, ja arpoo siité toiseen asti,
eli suurenpaa lukua ei en&én oteta mukaan. Next(1,4) arpoo lukuja 1,2,3;

using System;

using System.Collections.Generic;
using System.Lingq;

using System.Text;

namespace Satunnaisluku

{

class Program

{

static void Main(string[] args)
{
int 1i;
Random satluku = new Random(); //Luodaan
//satunnaisluku olio satluku
//Next kaskylla arvonaan satunnaisluku annetulta
//valilta
for (i=0;1i<40;i++) //yhden rivin for lausekkeessa
//ei tarvita {} merkkeja
Console.WriteLine(+satluku.Next(0,7));
//tulostaa 40 satunnaislukua
//Huomaa, ensimmainen luku otetaan mukaan,
//muttei toista
//Eli tata arpoo luluka 0,1,2,3,4,5,6

Console.Write("\nPaina jotain nappainta
jatkaaksesi...");
Console.ReadKey(true);

}

18 Hyddyllisia linkkeja
Microsoftin .NET ohjelmointisivut: http://msdn.microsoft.com/en-us/library .
Microsoftin .NET keskustelufoorumi: http://social.msdn.microsoft.com/Forums/en-
US/categories .
Visual Studio 2010 latausosoite: http://www.microsoft.com/express/Downloads/
Novellin Mono kehitysympéristo: http://www.mono-project.com/Main_Page

Omat sivuni: www.netti-lakka.com

Ohjelmointisivuni: www.ohjelmoimaan.net

http://msdn.microsoft.com/en-us/library
http://social.msdn.microsoft.com/Forums/en-US/categories
http://social.msdn.microsoft.com/Forums/en-US/categories
http://www.microsoft.com/express/Downloads/
http://www.mono-project.com/Main_Page
http://www.netti-lakka.com/
http://www.ohjelmoimaan.net/

19 Lahteet

-Ammattiopisto koulutus: OSAO

-Programming C#: Liberty, Jesse

-C#-ohjelmointi: Moghadampour, Ghodrat

-Microsoftin C# sivut: http://msdn.microsoft.com/en-us/library
-MSX-assembler ja -konekieli: lan Sinclair

http://msdn.microsoft.com/en-us/library

