

Paavo Räisänen

C# Perusopas

www.ohjelmoimaan.net

Tätä opasta saa vapaasti kopioida, tulostaa ja levittää ei kaupallisissa tarkoituksissa.

Kuitenkaan omille nettisivuille opasta ei saa liittää.

Opetustarkoituksessa materiaali on vapaasti käytettävissä.

Verkko-opetuksessa oppaan saa julkaista oppilaille tarkoitetuilla sivuilla.

http://www.ohjelmoimaan.net/

Sisällysluettelo

1: Alkuun

 1.1 Alkusanat

 1.2 Miten tietokone ajattelee?

 1.3 Johdatus konekieleen

 1.4: Ensimmäinen ohjelma

2: Muuttujat

 2.1: Kokonaislukutyypit

 2.1.1: Taulukko kokonaislukutyypit

 2.2: Reaali- eli desimaaliluvut

 2.2.1: Taulukko reaali- eli desimaaliluvut

 2.3: Aritmeettiset operaattorit

 2.3.1: Taulukko aritmeettiset operattorit

 2.4: Arvonmuunto-operaattoreita

 2.4.1: Taulukko arvonmuunto-operaattoreita

3: Tiedon kysyminen ja tulostus konsoliohjelmissa

 3.1: Tiedon tulostaminen

 3.1.5: Esimerkkiohjelma muuttujista, niiden tulostamisesta ja tietotyypin

tulostuksesta

 3.2: Tiedon lukeminen ja poikkeuksien käsittely

4: Boolean operaattorit

 4.1:Vertailuoperaattorit

 4.2: Loogiset operaatorit

 4.3: Ehto-operaattori ?

5: Vertailulauseet

 5.1: if lause

 5.1.1: Esimerkkiohjelma karkausvuosi

 5.2: switch lause

 5.2.2: Esimerkkiohjelma kuukausien päivien lukumäärästä

 5.2.3: Esimerkkiojelma merkin vertaaminen

 5.2.4: Esimerkkiohjelma merkijonosta switch lauseessa

6: Toistolauseet

 6.1: for silmukka

 6.1.4: Esimerkkiohjelma for silmukasta ja satunnaislukugeneraattorista

 6.2: while silmukka

 6.2.1: Esimerkkiohjelma kertoma while lauseella

 6.3: do-while silmukka

7: Hyppylauseet

 7.1: continue

 7.2: break

 7.3: goto

8: Visual Studion käytöstä

 8.1: Solution Explorer

 8.2: Ohjelman tallennus

 8.3: Ohjelman ajaminen

 8.4: Ohjelman julkaisu

9: Taulukot

 9.1: Yksiulotteinen taulukko

 9.2: Moniulotteinen taulukko

 9.2.1: Esimerkkiohjelma yksi- ja moniulotteisesta taulukosta

 9.3: Sisäkkäinen taulukko

 9.3.1: Esimerkkiohjelma sisäkkäisistä taulukoista

10: strig lauseista ja char tyypistä

 10.1: Esimerkkiohjelma merkkijonojen käsittelystä: siansaksa

11: Lueteltu tyyppi enum ja vakio const

 11.1: Esimerkkitehtävä enum lauseesta ja const vakiosta

12: foreach() toistolause

 12.1: Esimerkkiohjelma foreach lauseesta

13: Ohjausmerkit

 13.1: Taulukko ohjausmerkit

14: Päivämäärän ja ajan ottaminen tietokoneen kellosta

 14.1: Esimerkkiohjelma aikamäärästä

15: Matemaattisia operaatioita

 15.1: Esimerkkiohjelma matemaattisista operaatioista

16: bool tyyppi

17 Satunnaisluku

18: Hyödyllisiä linkkejä

19: Lähteet

1 Alkuun

1.1: Alkusanat

Miksi valita ohjelmointikieleksi C# (äännetään C Sharp. Lyhennetään joskus myös

CS. Huomaa, että eri asia kuin tyylikieli CSS.)? C# on ensimmäiseksi

ohjelmointikieleksi yhtä hyvä kieli, kuin joku muukin. Ei parempi, eikä huonompi.

C# on lähinnä Javan kilpailija, joka on yleisinpiä ohjelmointikieliä erilaisilla

korkeakoulutason ohjelmoinnin alkeiskursseilla. Myös C# :ia käytetään ohjelmoinnin

alkeis- ja jatkokielenä myös korkeakoulutasolla. Edelleen perus C tai Basicit ovat

helpoimpia kieliä ohjelmoinnin opetteluun. Basicin opettelulla ei vain ole

myöhemmin ohjelmoinnissa suurtakaan hyötyä, poislukien tästä tosin Visual Basic.

Jos olet nyt kirjoittamassa ihka ensimmäista ohjelmaa, joku QBasic on kyllä

kieltämättä helppo valinta opetella ihan ohjelmoinnin ensiaskeleet. Kuitenkin, kunhan

ihan ensimmäiset ohjelmat saa tehtyä, ohjelmointi sujuu ihan samoin C # :kin.

Koneenläheisessä ohjelmoinnissa C yleisin kieli. C# on kehitetty Javasta ja C++ :sta.

C# on ohjelmoinnin opiskeluun hyvin käytännöllinen kieli sen jälkeen kun

alkukankeuksista pääsee. Ihan kuten Javalla ja C++:lla, C#:lla pystyy lähes kaikkeen,

mitä tavallinen ohjelmoija tarvitsee. Lisäksi kun osaa yhtä ohjelmointikieltä, muiden

opiskelu on helppoa. Ongelmat ratkaistaan pitkälti samalla tavalla, joskin eri

syntaksilla, ja erilaisilla erikoistoiminnoilla. C#:lla pystyy tekemään myös Windows

mobiiliohjelmia. C#:lla pystyy tekemään sekä konsoli-, Windows että nettiohjelmia.

Sillä pystyy palvelinohjelmointiin ASP.NET ohjelmointina, ja se toimii tietokantojen,

kuten MySQL ja MSSQL kanssa. C# ASP.NET toimii hyvin yhteen scriptikielien,

kuten ActionScript (Flash) ja JavaScript (Ajax) kanssa. Erikoisuutena pelipuolella on,

että Microsoftin XNA peliohjelmointi scriptikirjasto käyttää C#:ia ja samoin Unity

3D pelimoottorin nykyisin ainoa sallittu ohjelmointikieli on C#. C# on myös yksi

Microsoft Silverlightin sallimista kielistä. Silverlight on Microsoftin vastine Flashille.

C# on tällä hetkellä eniten käytetty .NET alustainen kieli. Muita .NET alustalla

toimivia kieliä ovat mm. Visual Basic .NET, Visual C++ ja Visual J#. Visual J#:n

avulla voidaan Javaa käyttää .NET alustalla. Javan tapaan C# on ns. tavukoodikieli,

joka ajetaan virtuaalikoneessa, joka mahdollistaa ohjelmien toimimisen erilaisissa

käyttöympäristöissä. Javan tapaan myös C# on olio-ohjelmointikieli.

Mainittakoon, että jos tässä kehun C# :ia, Java ja PHP ovat kieliä, joita eritoten

internet ohjelmoinnissa ei voi ohittaa, eikä ole tarpeenkaan. Internet ohjelmointi on

oma maailmansa, joka on opeteltava erikseen, vaikka esim. laskutoimitukset, tekoäly

jne. toimivatkin samalla lailla. C ja C++ ovat taasen eritoten joissakin ohjelmoinnin

osa-alueissa, kuten koneenläheisessä- tai käyttöjärjestelmäohjelmoinnissa lähes

standardeja. Kuitenkin C# pystyy jokseenkin kaikkeen samaan. Eritoten

peliohjelmointipuolella C Sharppia käytetään paljon, samoin Windows

ohjelmoinnissa. Internet puolella C# käytössä on ongelma, että se toimii lähinnä

Windows palvelimilla (IIS), jotka ovat kalliinpia, kuin yleisimmin käytetyt Linux

palvelimet (Apache). Samoin, vaikka C# ASP.NET ohjelmoinnissa voi käyttää halpaa

(ja toimivaa) MySQL tietokantaa, siitä on vaikea saada tietoa. Yleensä ASP.NET

ohjelmoinnissa käytetään Microsoftin MSSQL tietokantaa, joka on kallis.

Tämä opas pyrkii lähtemään hyvin alkeista. Sinulla on kuitenkin hyötyä, jos osaat jo

hieman jotain ohjelmointikieltä. Jos olet kokeneempi ohjelmoija, ja haluat opetella

uuden kielen, voit kenties sivuuttaa tämän oppaan alun hyvin nopeasti.

1.2: Miten tietokone ajattelee?

Tietokone ei ajattele täysin samalla tavalla kuin ihminen. Kuitenkin, tietokone ei

ajattele täysin eri tavalla kuin ihminen. Tietokoneen ohjelmointi vaatii vain

analyyttistä ajattelutapaa. Tieokone ei ymmärrä asiakokonaisuuksia, vaan sille on

kaikki esiteltävä täysin yksityiskohtaisesti. Näin on erityisesti konekielessä, jolla

tietokone vime kädessä ajattelee. Konekielessä esim. laskutoimitus 4*6 tapahtuu

näin:

Esimerkki 1:

1: laskuri=3

2: lataa muuttujaan 6

3: silmukka: lisää muuttujaan 6

4: vähennetään laskuria yhdellä ja palataan silmukkaan laskuri kertaa

Koska rivillä kaksi alustetaan jo valmiiksi muuttujaan kuusi, laskuriin laitetaan

muuttuja-1, ja näin, kun muuttujaan lisätään kolme kertaa arvo kuusi, muuttuja saa

lopputulokseksi 24.

Korkeamman tason kielissä on toimintoja helpotettu tekemällä monimutkaisenpia

käskyjä. Voit siis suoraan kirjoittaa muuttuja=4*6. Itse tietokone kuitenkin suorittaa

ohjelman aina konekielisesti. Erilaiset tietokoneen käskyt ovat näin oikeastaa

konekielisten ohjelmien aliohjelmakutsuja. Tavallaan ohjelmoija myös itse tekee

”käskyjä”, aliohjelmakutsuja ,tehdessään aliohjelmia (funktioita) ja olio-

ohjelmointikielissä (kuten C#), tehdessään luokkia ja olioita.

Ihminen pystyy helposti käsittelemän suuria kokonaisuuksia, opittuaan ne ensin.

Kuitenkin myös tietokonetta voi opettaa. Kun ohjelmoija tekee valmiin olion, esim.

olion, joka laskee päivämäärän tarkistuksen (onko karkausvuosi, onko kuukaudet 1-

12, onko päivämäärä annetussa kuukaudessa mahdollinen, jne.), hän voi käyttää tätä

oliota muissakin ohjelmissaan. Näin ohjelmoija on ikäänkuin luonut oman käskyn.

Hän voi nyt liittää tämän olion, ”käskyn”, myöhempiin ohjelmiin, ja käyttää sitä

syöttämällä vain ”käskylle” haluamansa tiedot.

Esimerkki 2: kuinka kertoa tietokoneelle, kuinka auto rakennetaan.

1: Luodaan luokka auto.

2: Määritellään eri metodeissa esim. seuraavat toiminnot

 2.1: Tee kori

 2.2: Tee moottori

 2.3: Tee renkaat

 2.4: jne

3: Asiat on vielä pikottava pienemmiksi, jotta tietokone ymmärtää sen. Niinpä

tietokoneelle on yksinkertaistettava eri osaalueiden toteuttaminen, eli:

 3.1: Tehdään moottori

 3.1.1: Tee itse moottori

 3.1.2: Lisää lisälaitteet

 3.1.2.1: Lisää laturi

 3.1.2.2: Lisää sytytysjärjestelmä

 3.1.2.3: Lisää jäähdytysjärjestelmä

4: Tietokone ei kuitenkaan osaa tehdä esim. laturia ilman tarkenpia neuvoja. Sille on

vielä kerrottava, mitä osia laturi sisältää. Sitten on vielä kerrrottava, miten osat

valmistetaan jne.

Kun olet kerran tehnyt tämän, voit periaatteessa rakentaa samarakenteisen auton

antamalla vain tiedot oliolle. Eli kaikista osista tehdään muuttujia. On esim seuraavat:

Esimerkki 2:

Moottori:

1: Laturin tyyppi

2: Sytytysjärjestelmä

3: Jäähdytysjärjestelmä

4: Moottorin tyyppi

Jos on tarpeen, eli osat eivät ole noin yksinkertaisissa ”paketeissa”, vaan kuten kuten

esimerkissä kaksi, on tietokoneelle syötettävä tiedot kaikkia lisäosien osia myöten.

Tietokone on kuitenkin taitava toistamaan ja myös muistamaan. Kun sille kerran on

kerrottu joku rakenne, se osaa vaihtuvilla tiedoilla helposti tehdä samanlaisen.

Uuden auton rakentaminen ei tosin ole näin yksinkertainen. Auto toki voidaan koota

tarvikeosista, kuten esimerkissä kolme, mutta jos vaihdetaan moottorin tyyppiä,

joudutaan todennäköisesti vaihtamaan myös tarvikeosien tyyppi. Tietokoneelle

voisikin opettaa, mitä lisäosia kukin moottori käyttää. Sensijaan siinä tulee vastaan

tietokoneen rajoittuneisuus, että jos esim. laturiin vaihdetaan erilainen ruuvi,

luultavasti koko laturi on suunniteltava uudelleen. Tällainen suunnittelu ei ole

tietokoneelle helpoa opettaa, vaan yleensä tehtäisiin koko laturi aliohjelma uudelleen.

Kuten huomaat, tietokone ei ole kovin älykäs. Siltä puuttuu paljolti ihmisen

suunnittelutaito ja inovatiivisuus. Se on kyllä taitava laskemaan, toistamaan ja

muistamaan. Tietokonetta pyritään kehittämään älykkäämmäksi erilaisilla

tekoälyohjelmilla, joilla jotain saavutuksia on saatu esim. robottitekniikassa.

1.3: Johdatus konekieleen

Tämän ymmärtäminen ei ohjelmoinnin kannalta ole välttämätöntä. Tämä kuitenkin

selventää, kuinka tietokone ajattelee, ja on ikäänkuin jatkoa esimerkille yksi.

Tietokone ymmärtää viime kädessä vain nollia ja ykkösiä, eli binäärilukuja, kuten

11001011. Käytännössä konekieliohjelmoijat korvaavat nämä binääriluvut

symbolisella konekielellä, eli Assemblyllä. Yhtä binäärilukua vastaa jokin

kirjainyhdistelmä, eli esim. add, inc, jr, djnz, jne, jotka tietokone muuttaa

binääriluvuksi. On mahdollista muuttaa nämä lyhenteet taulukon avulla (tai

ulkomuistista, jos on hyvä muisti) suoraan binääriluvuiksi, ja ohjelmoida siis

tietokonetta suoraan nollilla ja ykkösillä. Tietokoneen prosessori ei ymmärrä

kovinkaan suurta käskykantaa. Se lähinnä osaa laskea yhteen, vähentää, tallentaa,

hypätä, toistaa ja lähettää ja vastaanottaa tietoja porteista (in, out). Esimerkiksi

yksinkertainen ”Terve Maailma!” -ohjelma tallentaa tietokoneen muistiin sanat

”Terve Maailma!” kirjain kerrallaan peräkkäisiin muistipaikkikkoihin (ja

välilyöntikoodin väliin). Sitten tulostus tapahtuu käymällä kyseinen muistikohta

muistipaikka kerrallaan läpi, ja syöttämällä kirjainkoodi (binäärilukuina muistissa)

numero kerrallaan näytön tulostuksen portin läpi näytölle. Tietokone osaa sitten

muuttaa binääriluvun kirjaimeksi.

Lasku 4*6 tapahtuisi konekielellä seuraavasti:

lataa akkuun 6

lataa laskuriin 3

silmukka: lisää akkuun 6

palaa silmukkaan ja vähennä laskuria

Eli Z80 assemblerilla:

LD a,8

LD b,3

silmukka: ADD a,8

DJNZ silmukka

Ja tietokoneen lopulta ymmärtämässä muodossa Z80 konekielessä:

00111110

00001000

00000110

00000011

11000110

00001000

00010000

00000000

Tässä siis esimerkiksi käskyä ”LD a ”vastaa binääriluku 00111110 ja sitä seuraa

numero kahdeksan binäärimuodossa,eli 00001000.

1.4: Ensimmäinen ohjelma

Oikeastaan C#:sta, kuten Javastakin hieman vaikean opittavan ensimmäiseksi tekee

ensimmäisten ohjelmien kirjoittaminen. Kun ensimmäisistä ohjelmista selviää,

ohjelmointi C#:lla on aivan yhtä helppoa, kuin vaikka Basicilla. Myöhemmin

laajoissa isommissa ohjelmissa C#:n edistyksellisyys tekee siitä aivan eri tavalla

paremman ohjelmointikielen Basiceihin verrattuna. Oikeastaan Basicit eivät sovellu

kuin ohjelmoinnin opetteluun, ja kun vähän näkee vaivaa, oppii paremmin

kehittyneemmillä kielillä. Basiceista tosin erikseen mainittava aiemminkin mainittu

Visual Basic, joka on ihan ammattikäytössä.

Jos ohjelmoitaisiin Basicillä, ensimmäisen ohjelman teko olisi helppoa. Pitäisi vain

kirjoittaa kääntäjään:

Esimerkki 4:

1: print ”Terve Maailma!”:

ja käynnistää tulkki ”run” komennolla, niin teksti näkyisi näytöllä. Mainittakoon, että

toisin kuin aikoinaan pikkukoneilla Commodore 64:lla, MSX:llä jne., tietokoneiden

mukana nykyisin ei tule mitään ohjelmointikieltä. Ilmaisia ohjelmointikieliä ja

ohjelmointiympäristöjä on kuitenkin saatavana vaikka kuinka paljon. Käytän tässä

Microsoft Visual Studio 2010 Express ohjelmaa, jonka saa ilmaiseksi ladattua

osoitteesta http://www.microsoft.com/express/Downloads/ .

Ilmaisella Novellin ”Mono” kehitysympäristöllä C# ohjelmia voi kehittää ja ajaa eri

käyttöjärjestelmissä. Lisätietoa löytyy Monon pääsivulta http://www.mono-

project.com/Main_Page

Sitten ensimmäinen ohjelma. Käynnistä Visual Studio. Klikkaa ”New Project” .

Kirjoita avautuvassa ikkunassa alas ”Name” kohtaan projektin nimeksi

”EnsimmainenOhjelma”. Klikkaa sitten kerran ”Console Application” kohtaa ja sen

jälkeen alhaalta ”OK”.

Sinulle avautuu seuraava koodi.

Kuten näet, antamasi ohjelman nimi tulee namespace kohtaan. Sitäon hyvin vaikea

muuttaa myöhemmin, ja säilyttää ohjelman toimivuus.

http://www.microsoft.com/express/Downloads/
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace EnsimmainenOhjelma

{

 class Program

 {

 static void Main(string[] args)

 {

 }

 }

}

Annoin projektille nimeksi ”EnsimmainenOhjelma”, joka näkyy ”namespace”

kohdassa. Huomaathan: ohjelmointikielet yleensäään eivät hyväksy ääkkösiä nimissä.

Ääkköset toimivat kuitenkin tulostettaessa lauseissa. Ohjelmassa on ”using” kohta.

Siihen kuuluvat luokkakirjastot. Eri käskyt vaativat toimiakseen eri luokkia, jotka on

sisällytettävä ohjelman alkuun.

Kirjoita Main() lohkoon aaltosulkeiden { } väliin seuraava koodi. Aaltosulkeet

löytyvät näppäimistöltä AltGr 7 ja 0. // merkintä tarkoittaa kommenttia, eli sillä

ohjelma ei tee mitään. Vaihtoehtoisesti kommentti voidaan sijoittaa /* ja */

merkinnän väliin. Huomaat, että Visual Studiossa on ennustava tekstin syöttö, josta

ensimmäisen tai ensimmäisten kirjaimien kirjoittamisen jälkeen on helppo valita

käsky (metodi).

//Ensimmäinen ohjelmani

Console.WriteLine("Terve Maailma!");

Console.Write("Paina jotain näppäintä jatkaaksesi...");

Console.ReadKey(true);

Valitse sitten Debug/Start Debugging, ja näyttöön ilmestyy ensimmäisen ohjelmasi

teksti. Huomaathan, että C#:ssa käskyjen ja muuttujien nimissä isoilla ja pienillä

kirjaimilla on merkityksensä. On eri asia kirjoitatko ”Luku” vai ”luku”.

Tässä vielä ensimmäinen ohjelma ja esimerkki kommentin käytöstä. Kommentteja

kannattaa käyttää selventämään ohjelmaa, jotta sinun on helpompi myöhemmin

ymmärtää ja muokata koodia.

1.4.1: Ensimmäinen ohjelma

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace EnsimmainenOhjelma

{

 class Program

 {

 static void Main(string[] args)

 {

 /* Tässä on esimerkki ensimmäisestä ohjelmasta

 ja kommenttilauseen käytöstä */

 Console.WriteLine("Terve Maailma!");

 Console.Write("Paina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

{ ja } eli aaltosulkeet ovat helpompi ymmärtää, kun tietää, mitä ne merkitsevät

Pascalissa, eli { on ”Begin” ja } on ”End”. Aaltosulkeet aloittavat ja lopettavat

jonkun lohkon.

Huom. Ohjelmarivit päättyvät yleensä ; merkkiin (puolipiste). Joitain poikkeuksia on,

kuten for {}, while {} tai switch {} rakenteet, jotka käsitellään myöhemmin.

Jo tässä vaiheessa on hyvä vilkaista oppaan kohtaa 8: ”Visual Studion käytöstä”.

2 Numeeriset muuttujat

Muuttujat ovat sinulle varmast tuttuja matematiikasta, jossa niitä käytetään

monenlaisissa yhtälöissä, esim. y=2x+4. Aivan sama periaate muuttujilla on myös

ohjelmoinnissa. Numeromuuttujien lisäksi ohjelmoinnissa voi kuitenkin olla myös

merkkimuuttujia. Taulukoita käyteteään paljon. Muuttujista on runsaasti erilasia

tyyppejä, jotka esittelen tässä luvussa. Muuttujista on sekä C# tyyppi, että .NET

tyyppi. Kummatkin toimivat C# ohjelmoinnissa, mutta jos käytät jotain muuta .NET

kieltä, .NET tyypin muuttujat ovat standardi.

Käytän tässä * merkkiä kertomerkkinä, ja ^ merkkiä potenssiin korotettuna. 10^n

tarkoittaa käytännössä, että lukuun lisätään n nollaa (pilkkua siirretään n numeroa

oikealle) , eli 2*10^6 on 2 000 000. Jos potenssii korotuksessa on miinus merkki,

pilkkua siirretään n numeroa vasemmalle, eli

2*10^-6 on 0,000 002.

Muuttujan tietotyypin voi tutkia GetType() metodilla, josta esimerkki myöhemmin

kohdassa 3.1.5.

Huomaathan, että C Sharp käyttää englannikielistä merkistöä, eli muuttujien, ja

metodien (käskyjen) nimissä ei voi olla ”ääkkösiä” (ä,ö,å).

C# pitää kirjaa muuttujista ja itsekin tehdyistä metodeista. Kun olet kerran määritellyt

muuttujan, ja alat kirjoittamaan muuttujaa myöhemmin käyttäessäsi, ohjelma

ehdottaa määrittelemiäsi muuttujia.

2.1: Kokonaislukutyypit

2.1.1: Taulukko kokonaislukutyypit

C#

tyyppi

.NET

tyyppi

Koko

tavuina

Arvoalue

sbyte Sbyte 1 -128...127 voi olla etumerkki

byte Byte 1 0...255 huom. ei etumerkkiä

short Int16 2 -32.768...32.767 voi olla etumerkki

ushort UInt16 2 0...65535 huom. ei etumerkkä

int Int32 4 -2.147.483.647...2.147.483.647 voi olla etumerkki

uint UInt32 4 0...4.294.967.295 huom. ei etumerkkiä

long Int64 8 noin -9*10 ^18...9*10^18 voi olla etumerkki

ulong UInt64 8 noin 18*10^18 huom. ei etumerkkiä

Yleisimmin näistä käytetään int -tyyppiä.

Esim. 2.1:

 //Muuttuja määritellään näin

 int a;

 int x,y,z;

 long k;

Kaikki muuttujat on esiteltävä ennen käyttöä.

Kuten huomasit, samantyyppisiä muuttujia voi esitellä peräkkäin lueteltuna pilkulla

erotettuna. Usein muuttujat joutuu myös alustamaan. Jos yrität käyttää muuttujaa

ohjelmassa ilman, että siihen on varmasti sijoitettu arvo, kääntäjä ilmoittaa virheestä:

Use of unassigned local variable 'a'. Tässä tapauksessa muuttuja a oli jätetty

alustamatta.

Esim. 2.2:

 //Muuttujat voi esittelyn yhteydessä alusta näin

 int a=0;

 int x=8, y=0, z;

 long k=0;

 //Tässä z on jätetty alustamatta

2.2: Reaali- eli desimaaliluvut

2.2.1: Taulukko reaali- eli desimaaliluvut

C#

tyyppi

.NET

tyyppi

Koko

tavuina

Arvoale

float Single 4 noin +/- 1,5*10^-45...+/-3,4*10^38

double Double 8 noin +/-5*10^-324...+/-1,7*10^308

decimal Decimal 12 noin +/-1.0*10^-28...+/-7,9*10^28

20:llä merkittävällä numerolla

Joissain tapausissa float ja double tyyppien kanssa voi sattua pyöristysvirheitä hyvin

suurissa ja tarkkuutta vaativissa laskuissa. decimal tyyppi laskee 28 luvun

tarkkuudella, eikä siinä voi sattua pyöristysvirheitä.

Kun käytät float tai decimal tyypin muuttujaa täytyy luvun loppuun laittaa

kirjainmerkintä seuraavan esimerkin mukaisesti. Huomaa: ohjelmoinnissa käytetään

desimaalipistettä, ei pilkkua.

Esim. 2.3:

 float h=2.16f;

 //tai

 float a=4.12F;

 decimal b=0.1612m;

 //tai

 decimal k=7.18M;

double muuttujan loppuun ei ole pakko laittaa merkkiä, mutta voidaan laittaa d tai D.

Voit myös alustaa reaalilukumuuttujan eksponentaaliesityksen avulla, eli:

Esim. 2.4:

 float a=2.438768e+4f; //a saa arvon 24387,68 eli sama kuin 2.438768*10^4

 decimal b=14.276e-3M; //b saa arvon 0,014276 eli sama kuin 14.276*10^-3

 double c=8171.2e-2; //c saa arvon 81,712 eli sama kuin 8171.2*10^-2

2.3: Aritmeettiset operattorit

2.3.1: Taulukko aritmeettiset operattorit

Operaattori Tarkoitus Esimerkki

+ Summa (yhteenlasku) a+b

- Erotus (vähennyslasku) a-b

* Tulo (kertolasku) a*b

/ Osamäärä (jakolasku) a/b

% Jakojäännös a%b

2.4: Arvonmuunto-operaattoreita

2.4.1: Taulukko arvonmuunto-operaattoreita

Operaattori Kuvaus Esimerkki Merkitys

+= Yhteenlasku x+=y x=x+y

-= Vähennys x-=y x=x-y

= Kerto x=y x=x*y

/= Jako x/=y x=x/y

%= Jakojäännös x%=y x=x%y

++ Etulisäys ++x x=x+1

-- Etuvähennyt --x x=x-1

Operaattori Kuvaus Esimerkki Merkitys

++ Jälkilisäys x++ x=x+1

-- Jälkivähennys x-- y=y+1

Taulukossa näkyy vähennys epäselvänä, mutta siinä on miinus ja = merkit peräkkäin.

Oma mielipiteeni on, että kannattaa pääsääntöisesti käyttää ”Merkitys” sarakkeessa

olevia hieman pidenpiä muotoja. Ne ovat huomattavasti selkeänpiä. Nämä kannattaa

kuitenkin painaa mieleen, sillä voit joutua lukemaan koodia, jossa näitä on käytetty

paljonkin.

Kuitenkin ++ ja – operaattorit ovat laskureissa yleisiä, ja tavallisimmin käytettyjä

vähennyt ja lisäys operaattoreita. Esim. i++ tai i-- .

3 Tiedon tulostus ja kysyminen konsoliohjelmissa

3.1: Tiedon tulostaminen

Konsoliohjelmissatieto tulostetaan Console.WriteLine() metodilla.

Esimerkki 3.1.1: Console.WriteLine(”Tulostettava teksti”);

Lauseita voi yhdistellä ja muuttujia lisätä + operaattorin avulla.

Esimerkki 3.1.2: Console.WriteLine(”Muuttujan a arvo on” + a + ”ja muuttujan b

arvo on” + b);

Jos et halua rivinvaitoa lauseen jälkeen, voit käyttää myös Console.Write() metodia.

Esimerkki 3.1.3: Console.Write(”Tulostettava teksti.”);

Muuttujat voi tulostaa myös seuraavasti:

C#:ssa voi muuttujat laittaa aaltosulkeissa tulostuslauseen sekaan. Huomaa, että

aaltosulkeisiin

 laitetaan numero. Lauseeseen sijoitettavat muuttujat listataan pilkulla eroitettuna

heittomerkien

 jälkeen. Luettelon ensmmäisen muuttujan numero on 0, seuraavan 1 jne.

Esimerkki 3.1.4:

 int x=20, y=40;

 Console.WriteLine("X-koordinantti on {0} ja Y-

koordinantti on {1}.", x,y);

 //Lause tulostaa saman kuin:

 Console.WriteLine("X-koordinantti on " + x + " ja Y-

koordinantti on " + y + ".");

Avaa Visual Studio ohjelmassa konsoliohjelma (Console Application) ja anna sille

nimeksi TulostamisEsimerkki. Muokkaa sitten koodi seuraavan laiseksi. Voit toki

ottaa suoraan tästäkin koodin kopioi/ liitä toiminnolla.

3.1.5: Esimerkkiohjelma muuttujista, niiden tulostamisesta ja tietotyypin

tulostuksesta

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace TulostamisEsimerkki

{

 class Program

 {

 static void Main(string[] args)

 {

 //Määritetään int tyyppisiä muuttujia.

 //Muuttujat voi samalla alustaa jos

 //haluaa.

 //Mikäli käyttää muuttujaa ennenkuin sihen on

 //sisällytetty mitään arvoa,

 //kääntäjä antaa virheilmoituksen.

 //Arvon voi varalta alustaa jo alussa

 //nollaksi, mikäli ei ole varma,

 //sijoitetaanko ennen käyttöä arvoa.

 int a, b = 0, c = 4;

 //Määritetään double tyyppisiä muuttujia

 double pii = 3.14, k;

 //Määritetään float tyyppisiä muuttujia

 float x, y = 5;

 //Suoritetaan laskutoimituksia. Tässä

 //tapauksessa kaikkia muuttujia ei

 //tarvinnut alustaa, koska niihin

 //lasketaan arvo ennen muuttujan muuta

 //käyttöä, kuten tulostusta.

 //Tämä ei toimisi: b=a+c, koska muuttujalla a

 //ei ole alkuarvoa.

 //Sensijaan näin toimii:

 a = b + c;

 k = pii * 2;

 x = y / 2;

 //Tulostetaan arvot

 Console.WriteLine("Muuttujan a arvo on " + a

+ ", b:n arvo on " + b + " ja c:n " + c);

 Console.WriteLine("Muuttujan pii arvo on: " +

pii + ", k:n " + k + ", x:n " + x + " ja y:n " + y);

 Console.WriteLine("Muuttujan pii tietotyyppi

on " + pii.GetType());

 Console.WriteLine("Lukujen 5 ja 2 jakojäännös

on " + 5 % 2);

 // \n merkinnällä voidaan tulostaa

 //rivinvaihtoja

 Console.Write("\nPress any key to continue .

. . ");

 Console.ReadKey(true);

 }

 }

}

3.2: Tiedon lukeminen ja poikkeuksien käsittely

Tiedot luetaan konsoliohjelmissa Console.ReadLine() metodilla. Tieto luetaan string

tyyppisenä, joten se on muutettava numeeriseksi erillisellä Parse metodilla, mikäli

halutaan käsitellä numeroa.

Esim 3.2.1: string syote = Console.ReadLine();

 int luku = int.Parse(syote);

C Sharpissa Console.ReadLine() metodilla ei voi kysymykseen laittaa tekstiä, vaan

itse kysymys on kirjoitettava Console.WriteLine() metodilla. Tyyppimuutoksen voi

tehdä myös suoraan kysymyslauseessa.

Esim 3.2.2: int luku;

 Console.WriteLine(”Anna luku: ”);

 luku=int.Parse(Console.ReadLine());

Jos nyt kuitenkin syötetään vastauksesi kirjain, tapahtuu virhe, kun yritetään muuttaa

kirjainta numeroksi (int tyypiseksi). Tämän voi estää käyttämällä ”try/catch”

rakennetta. Seuraavassa esimerkki.

Esim. 3.2.3: int luku;

 Console.WriteLine(”Anna luku: ”);

 try

 {

 //Yritetään tehdä tyyppimuunnos

 luku=int.Parse(Console.ReadLine());

 }

 catch

 {

 /*Tämä kohta suoritetaan,

 mikäli tapahtui virhe*/

 Console.WriteLine(”Tapahtui virhe.”);

 }

 finally

 {

 //Tämä lohko suoritetaan aina

 }

Poikkeuskäsittelyyn voi lisätä Exception kohdan, joka tulostaa tapahtuneen virheen.

Muuta vain catch osiota näin:

Esim.3.2.4: catch (Exception ex)

 {

 Console.Writeline(ex.Message)

 }

Poikkeuskäsittelyyn voi lisätä myös ”finally” kohdan, joka suoritetaan, tapahtuipa

virhe, tai ei. Poikkeuskäsittely kannattaa opetella jo ohjelmoinnin alkuvaiheissa.

”finally” lohkoa ei sensijaan useinkaan käytetä.

4 Boolean-operaattorit

C#:ssa on boolean tyyppinen muuttuja, joka sisältää joko arvon ”true” (tosi) tai

”false” (epätosi). Boolean-operaattorilla suoritetaan laskutoimitus, jonka tulos on

joko ”true” tai ”false”.

4.1: Vertailuoperaattorit

Operaattori Kuvaus Esimerkki Tulos, jos luku on

8

 == Yhtä suuri kuin luku==9 false

 != Eri suuri kuin luku!=8 false

 < Pienempi kuin luku<9 true

 <= Pienempi tai yhtäsuuri kuin luku<=8 true

 > Suurempi kuin luku>7 true

 >= Suurempi tai yhtäsuuri kuin luku>=9 false

4.2: Loogiset operaatorit

Operaattori Kuvaus Esimerkki Tulos, jos luku on

8

 ! Ei !(luku==8) false

 AND Ja (luku==8) && (luku<12) true

 &&

 OR Tai (luku>12) || (luku<9) true

 ||

Loogisissa operaattoreissa voidaan käyttä joko AND tai sitä korvaavana && ja

yhtälailla OR operaattorin tilalla voidaan käyttää merkintää || (löytyy näppäimistöltä

AltGr <).

4.3: Ehto-operaattori ?

Ehto-operaattorissaon kolme osaa: ehto, lauseke1 ja lauseke2 .Paluuarvo on

lausekkeen yksi arvo, jos lauske on tosi, ja lausekkeen kaksi arvo, jos lauseke on

epätosi.

Esimerkki 4.3.1:
int x=2, y=4;

int tulos = x < y ? (int)3 : (int)6; //lopputuloksena

 //tulos=3

tulos = x >= y ? (int)3 : (int)6 //lopputuloksena

 //tulos=6

 Vertailulauseet

5.1: if lause

if (jos) lauseella verrataan ehtoja toisiinsa. Se toimii seuraavasti.

Esim. 5.1.1:

if (x<10) //huom. Ei puolipistettä lopussa

{

 //suoritetaan, jos x<10

}

else if (x<12) //huom. Ei puolipistettä lopussa

{

 //suoritetaan, jos x>9 mutta pienempi kuin 12

 }

else if (x<=14)

{

 //suoritetaan, jos x>11 ja x on pienenpi tai yhtäsuuri kuin 14

}

else //huom. Ei puolipistettä lopussa

{

 //suoritetaan, jos mikään aiemmista tapauksista ei toteudu

}

Aina lauseessa ei ole ”else if” eikä ”else” osioita ollenkaan.

5.1.1: Esimerkkiohjelma karkausvuosi

Anna ohjelmalle nimeksi Karkausvuosi

Karkausvuosi lasketaan seuraavasti: vuosi on karkausvuosi, jos se on neljällä

jaollinen. Kuitenkaan vuosi ei ole karkausvuosi, jos se on sadalla jaollinen. Vuosi on

kuitenkin aina karkausvuosi, jos se on 400:lla jaollinen. Huomioi kuitenkin, että

ajanlaskutapa on välillä muuttunut, eikä kovin vanhasta ajanlaskusta ole tarkkaa

tietoa.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Karkausvuosi

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Anna vuosiluku: ");

 try

 {

 int vuosi =

int.Parse(Console.ReadLine());

 if (vuosi % 4 == 0 && vuosi % 100 != 0 ||

vuosi % 400 == 0)

 Console.WriteLine("Vuosi on

karkausvuosi.");

 else

 Console.WriteLine("Vuosi ei ole

karkausvuosi.");

 }

 catch

 {

 Console.WriteLine("Virheellinen syöte.");

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

Ohjelmassa ei tarvita erikseen sulkuja lausekkeessa

((vuosi % 4 == 0 && vuosi % 100 != 0) || vuosi % 400 == 0), vaikka ne myös

toimisivat, koska AND operaatiot suoritetaan ennen OR operaatioita, eli AND

operatioilla on korkeampi prioriteetti. Ohjelmassa näkyy hyvin myös % (jakojäännös)

operaation käyttö. Esim. 1600 % 4 = 0, kun taasen 1998 % 4 = 2.

Huomaa myös, että if ja else lauseiden jälkeen tulevaa koodia ei ole laitettu

aaltosulkeisiin. Se tosin toimisi, mutta kun lauseita seuraa vain yksi, aaltosulkeet

eivät ole pakollisia.

5.2: switch lause

Switch lause on toinen C Sharpin vertailulause. Yleensä switch lauseen voi korvata

if-else rakenteella, mutta usein switchlause on selkeänpi.

Switch lause toimii niin, että switch avainsanalle annetaan vertailtava arvo, esim.

switch(numero). case lauseessa tarkistetaan, sopiiko ehto. default lauseeseen voi

laittaa toiminnon, joka suoritetaan, jos yksikään case ehto ei toteudu. Hyvin usein

default kohta jätetään pois. Kaikkien case lauseiden on päätyttävä break käskyyn,

poislukien esimerkeissä 5.2.1 ja 5.2.2 näkyvät tapaukset, joissa ehtoja on peräkkäin

lueteltuna ennen suoritettavaa toimintoa. default päättyy aina break käskyyn.

5.2.1: Lausekkeen rakenne on:

switch(numero) //huom. Ei puolipistettä lopussa

{

 case ehto: //kaksoispiste

 //lausekkeet

 break;

 case ehto2:

 //toiset lausekkeet

 break;

 case ehto3:

 case ehto4:

 case ehto5:

 //kolmannet lauseet

 break;

 default: //kaksoispiste

 //suoritetaan, jos mikään aienpi ehto ei toteudu

 //jätetään useissa tpauksissa pois

}

5.2.2: Esimerkkiohjelma kuukausien päivien lukumäärästä

Anna ohelmalle nimeksi KuukausienPaivat

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace KuukausienPaivat

{

 class Program

 {

 static void Main(string[] args)

 {

 int pvm;

 Console.WriteLine("Anna kuukauden numero:");

 try

 {

 pvm = int.Parse(Console.ReadLine());

 switch (pvm)

 {

 case 2:

 Console.WriteLine("Kuukaudessa on

28 päivää. Karkausvuonna 29.");

 break;

 case 4:

 case 6:

 case 9:

 case 11:

 Console.WriteLine("Kuukaudessa on

30 päivää");

 break;

 default:

 Console.WriteLine("Kuukaudessa on

31 päivää");

 break;

 }

 }

 catch

 {

 Console.WriteLine("Virheellinen syöte.");

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

switch rakenteen olisi voinut toteuttaa if-else rakenteella seuraavasti:

if (pvm==4 || pvm==6 || pvm==9 || pvm==11)

 Console.WriteLine("Kuukaudessa on 30 päivää");

 else if (pvm==2)

 Console.WriteLine("Kuukaudessa on 28 päivää. Karkausvuonna 29.");

 else

 Console.WriteLine("Kuukaudessa on 31 päivää");

swich rakenne on kuitenkin tässä tapauksessa selkeänpi. Tämä ohjelma ei vielä tutki

sitä mahdollisuutta, että käyttäjä antaa kuukaudeksi pienemmän numeron kuin yksi,

tai suuremman kuin 12.

switch lausekkeen ehto voi olla myös merkki (char) tai merkkijono (string). Tällöin

vertailu tapahtuu seuraavasti:

5.2.3: Esimerkkiohjelma merkin vertaaminen

Anna ohjelmalle nimeksi Vokaali

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Vokaali

{

 class Program

 {

 static void Main(string[] args)

 {

 char merkki;

 Console.WriteLine("Anna jokin kirjain:");

 try

 {

 merkki = char.Parse(Console.ReadLine());

 switch (merkki)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 case 'y':

 Console.WriteLine("Merkki on

vokaali.");

 break;

 case 'ä':

 case 'ö':

 Console.WriteLine("Merkki on

vokaali ja ääkkönen.");

 break;

 default:

 Console.WriteLine("Merkki on

konsonantti, numero tai erikoismerkki.");

 break;

 }

 }

 catch

 {

 Console.WriteLine("Virheellinen syöte.

Syötä vain yksi kirjain.");

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

Ohjelmassa näkyy myös tyyppimuunnos char.Parse() jolla muutetaan string muuttuja

char muotoon.

Myös tässä tarvitaan ”try/catch” rakennetta tarkistukseen, tai muuten tapahtuu virhe,

jos käytäjä syöttää useamman merkin.

5.2.4: Esimerkkiohjelma merkijonosta switch lauseessa

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Vuodenaika

{

 class Program

 {

 static void Main(string[] args)

 {

 string kuukausi;

 Console.Write("Anna kuukauden nimi: ");

 kuukausi=Console.ReadLine();

 switch (kuukausi)

 {

 case "tammikuu":

 case "helmikuu":

 case "joulukuu":

 Console.WriteLine("Kuukausi on

talvikuukausi.");

 break;

 case "maaliskuu":

 case "huhtikuu":

 case "toukokuu":

 Console.WriteLine("Kuukausi on

kevätkuukausi.");

 break;

 case "kesäkuu":

 case "heinäkuu":

 case "elokuu":

 Console.WriteLine("Kuukausi on

kesäkuukausi.");

 break;

 case "syyskuu":

 case "lokakuu":

 case "marraskuu":

 Console.WriteLine("Kuukausi on

syksykuukausi.");

 break;

 default:

 Console.WriteLine("Annoit kuukauden

nimen väärin.");

 break;

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

Ohjelmassa näkyy myös Console.Write() metodin käyttö, joka ei vaihda riviä

automaattisesti käskyn jälkeen, kuten Console.WriteLine() metodi.

Poikeuskäsittelijää (try/catch) ei tässä tapauksessa tarvita, koska string muuttujaan

kelpaavat syötteenä kaikki merkit ja merkkijonot.

6 Toistolauseet

6.1: for silmukka

for silmukka toistaa ehdossa mainitun määrän silmukan sisässä olevia lausekkeita.

6.1.1: Rakenne

for(alkuehto,loppuehto,laskurin kasvatus) //huom. Ei puolipistettä

lopussa

{

 //lausekkeet;

}

Esim. 6.1.2:

for (int i=0;i<50;i++)

{

 //suoritettavat toiminnot;

 //silmukka suoritetaan 50 kertaa ja saa arvot 0...49

}

Esim. 6.1.3: Silmukka voi olla myös vähenevä

int i;

for(i=50;i>0;i--)

 //Suoritettavat lausekkeet, silmukka suoritetaan 50 kertaa ja saa arvot 50...1

Huom. for silmukan jälkeen ei tarvitse laittaa aaltosulkuja, jos suoritettavia lauseita

on vain yksi

for silmukan lausekkeiden suoritusjärjestys on seuraava. Suluissa suoritusvaihe

numerona.

for(aloitusosa(1);ehto(2);kasvatus(4))

{

 lauseet(3)

}

Lauseet siis suoritetaan ennen kasvatusvaihetta. Alustusosa suoritetaan vain kerran,

mutta muut osat toistuvasti. Ohjelman kulku siis on 1,2,3,4,2,3,4,2,3,4.

Jos for lause on:

for(i=0;i<2;i++)

{

 //lauseet

}

lauseet suoritetaan kaksi kertaa, eli i saa arvot 0 ja 1.

6.1.4: Esimerkkiohjelma for silmukasta ja satunnaislukugeneraattorista

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ForEsimerkki

{

 class Program

 {

 static void Main(string[] args)

 {

 int i, arvottu;

 Random satluku = new Random(); //Luodaan

 //satunnaisluku olio satluku

 for (i = 1; i < 21; i++)

 {

 arvottu = satluku.Next(1,101); //arvotaan

 //luku väliltä 1-101.

 //arvottu voi saada kokonaislukuarvon 1...100

 Console.WriteLine(i + ". satunnaisluku

on: " + arvottu);

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

Ohjelmassa on luotu satunnaislukuolio satluku. Olioista ei tässä vaiheessa tarvitse

tietää enemmän. Mainittakoon kuitenkin, että olio luodaan new avainsanalla.

Satunnaisluvun käytöstä on enemmän luvussa ”17 Satunnaisluku”.

6.1.5: Sisäkkäiset for silmukat

for silmukoita voi luoda myös sisäkkäisiksi, mikä on hyvin tavallista.

Tyyppiesimerkki on taulukko, jossa on y ja x koordinaatit. Useanpiakin sisäkkäisiä

silmukoita tarvitaan ajoittain.

Esim. 6.1.5.1: Kaksiulotteinen for silmukka

int i,j;

for (i=0;i<10;i++) for (j=20;j<40;j++) //suoritettava lause;

Huomaa, että jos for lauseet ovat peräkkäin, ja suoritettavia lauseita vain yksi,

aaltosulkeita ei tarvita.

Aaltosulkeita käytetään, jos lauseita on enemmän. Huomaa, että laskurin luku voi olla

mitä vain, kuten seuraavassa esimerkissä j :n arvo 20...39.

int i,j;

for (i=0;i<10;i++)

{

 //suoritettavia lauseita

 for (j=20;j<40;j++)

 {

 //suoritettavia lauseita;

 //lisää lauseita

 }

}

6.1.5: Esimerkkiohjelma sisäkkäsistä silmukoista

Tyypillisinpiä esimerkkejä sisäkkäisestä silmukasta on kertotaulu, joka on

kaksiulotteinen taulukko.

Seuraavassa kertotaulu lasku- ja tulostusohjelma.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Kertotaulu

{

 class Program

 {

 static void Main(string[] args)

 {

 int i, j;

 for (i = 1; i < 11; i++)

 {

 for (j = 1; j < 11; j++)

 {

 //tulostetaan kertotaulu. \t on

 //vaakasuuntainen sarkain

 //jonka avulla rivit saadaan kohdalleen

 //pystysarkain on \v

 Console.Write(j * i + "\t");

 }

 //tulostetaan rivin vaihto

 Console.WriteLine();

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

6.2: while silmukka

while silmukan rakenne on seuraava:

while(ehto)

{

 //suoritettavia lauseita

}

eli esim.

int i=0;

while(i<10)

{

 //suoritettavia lauseita

 //suoritetaan tässä tapauksessa 10 kertaa

 i++;

}

6.2.1: Esimerkkiohjelma kertoma while lauseella

Esim. kuuden kertoma lasketaan kertomalla 2*3*4*5*6.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Kertoma

{

 class Program

 {

 static void Main(string[] args)

 {

 int luku=-1;

 while (luku != 0)

 {

 try

 {

 Console.WriteLine("Anna kokonaisluku

väliltä 1-150, jonka kertoma lasketaan.");

 Console.Write("Syötä 0 kun haluat

lopettaa: ");

 luku =

int.Parse(Console.ReadLine());

 if (luku > 150)

 {

 Console.WriteLine("Luku on liian

suuri kertoman laskemiseen tällä ohjelmalla.\n");

 continue;

 }

 if (luku < 0)

 {

 Console.WriteLine("Luku on

negatiivinen.\n");

 continue;

 }

 double kertoma = 1;

 int i = 1;

 while (i <= luku)

 {

 kertoma = kertoma * i;

 i++;

 }

 if (luku != 0)

Console.WriteLine("Luvun " + luku + " kertoma on " +

kertoma);

 }

 catch

 {

 Console.WriteLine("Virheellinen

syöte.");

 }

 }

 }

 }

}

Ohjelmassa on myös continue lause, jolla voi palata silmukan alkuun, tässä

tapauksessa while(luku!=0) kohtaan.

while(luku!=0) tai esim. while(merkki!=”q” || merkki!=”Q”) rakennetta käytetään

silmukan toistamiseen. while(merkki!=”q”) rakenne esim. toistaa silmukkaa niin

kauan, kunnes käyttäjä syöttää ”q” kirjaimen.

6.3: do-while silmukka

do-while silmukka on lopetusehtoinen. Sitä käytetään while silmukan tapaan, mutta

lauseen ehto tarkistetaan vasta ilmukan lopussa. Siitä johtuen do-while silmukka

toistetaan aina vähintään yhden kerran. Jos alkuehto ei toteudu, toisinaan while

silmukkaa ei suoriteta lainkaan.

do-while silmukan rakenne:

do

{

 //suoritettavat lauseet

}

 while(ehto)

7 Hyppylauseet

7.1: continue

continue käskyllä voidaan hypätä esim. switch-case tai while silmukan alkuun. Tästä

oli esimerkki 6.2.1 esimerkkiohjelmassa.

7.2: break

break käskyllä voi katkaista silmukan suorittamisen. Tällöin ohjelma siirtyy

suorittamaan lauseita silmukan jälkeiseltä riviltä.

7.3: goto

goto käskyllä voi hypätä ohjelmassa toisen paikkaa merkityyn pointteriin.

Esim.

alku:

 //suoritettavia lauseita

 goto alku;

tai esim.

loop:

 //suoritettavia lauseita

 if (ehto<10) goto loop;

goto lauseen käyttöä pidetään erittäin huonona ohjemointitapana, ja se aiheuttaa

sekavia, ja jälkeen päin vaikeasti luettavia ohjelmia. Yleensä goto lauseen käyttö

kertoo huonosti rakennellusta ohjelmasta.

8 Visual Studion käytöstä

8.1: Solution Explorer

On mahdollista, että koodi häviää näkyvistä. Löydät koodin sivulla oikealla olevasta

”Solution Explorer” valikosta. Koodin saat näkyviin klikkaamalla .cs päätteistä

luokan nimeä. Näissä esimerkkiohjelmissa minulla on ollut luokan nimenä oletus, eli

”Program.cs”.

8.2: Ohjelman tallennus

Koko ohjelmaprojektisi saat tallennettua ”File/ Save All” komennolla. Ohjelman

nimeksi tulee oletuksena ohjelmaa luodessasi antamasi nimi. Voi valita, mihin

kansioon projektin tallennat. Oletusarvoisesti projekti tallentuu kansioon ”Visual

Studio 2010/ Projects”.

8.3: Ohjelman ajaminen

Ohjelma ajetaan ”Debug/ Start Debugging” kohdasta. ”Debug/ Step Into” toiminnolla

voit ajaa ohjelmaa rivi kerrallaan, ja näet, miten ohjelma etenee koodissa. Tästä voi

olla hyötyä virheiden etsimisessä. Klikkailessasi”Step Into” valintaa, ohjelma etenee

askeltaen. Jos ajat ohjelmaa ”Step Into” toiminnolla, voi lopettaa ajamisen

valitsemalla ”Debug/ Stop Debugging”.

8.4: Ohjelman julkaisu

Valitse Visual Studiosta ”project/publish”. Voit nyt tallentaa ohjelman haluamaasi

kansioon, tai työpödälle. Ohjelma tekee pikakuvakkeen, ja sen voi nyt myös siirtää

toiseen tietokoneeseen esim. muistitikun avulla. Ensimmäiselä ajokerralla ohjelma on

asennettava, joka tapahtuu pikakuvaketta tuplaklkkaamalla, jolloin asennus

käynnistyy.

9 Taulukot

Taulukot voivat olla joko yksi- tai moniulotteisia ja mitä tahansa perustietotyypeistä

(esim. int, double, string, char).

9.1: Yksiulotteinen taulukko

Yksiulotteinen taulukko luodaan seuraavasti:

tyyppi [] taulukon_nimi

taulukon_nimi = new tyyppi[taulukon_koko]

new operaattorilla varataan taulukolle muistitila

eli esim. int [] koordinantti;

 koordinantti = new int[20];

 //taulukon voi myös määritellä samala kun varaa tilan

 int [] koordinantti = new int[2};

 string [] taulukon_nimi = new string[maara]

 eli esim. string [] nimet= new string[8];

Taulukot voi myös alustaa esittelyn yhteydessä seuraavasti:

 int [] arvosanat = {1,2,3,4,5}; //C# varaa automaattisesti oikean muistimäärän

 string [] nimet = new string[3];

 //alustetaan yksitellen

 nimet[0] = ”Matti”;

 nimet[1] = ”Kalle”;

 nimet[2] = ”Ville”;

Voi tehdä myös näin:

string[] nimet = { "Matti", "Kalle" , "Ville" }; //C# varaa automaattisesti oikean

muistimäärän

char [] vokaali = {'a','e','i','o','u','y','ä,'ö'}; //C# varaa automaattisesti oikean

muistimäärän

Huomaa, että taulukko alkaa aina alkiosta nolla, eli ”int [3] arvosanat” määrittely

varaa taulukon paikat:

arvosanat[0];

arvosanat[1];

arvosanat[2];

9.2: Moniulotteinen taulukko

Kaksiulotteista taulukkoa voi verrata koordinaatistoon, jossa on korkeus ja leveys.

Kolmiulotteisessa on vielä syvyys. Yksi ja kaksiulotteisia taulukoita käytetään eniten,

mutta periaateessa tietokone voi muodstaa vaikka kuusiulotteisen taulukon, jonka

hahmottaminen on vaikeaa. Itse olen joskus käyttänyt neliulotteista taulukkoa, mutta

harvoin käytetään yli kaksi- tai kolmiulotteisia taulukkoja.

Moniulotteista taulukkoa voisi havainnollistaa monessa käytössä myös seuraavasti:

alkio[x,y,z]

jokaista x alkiota vastaa y kappaletta ominaisuuksia ja jokaista y alkiota kohti on z

kappaletta lisäominaisuuksia, eli x alkiolla on y*z lisäominaisuutta.

Esimerkiksi voisi olla kysymyskaavake. Taulukon alkiossa[x] olisi kysymysten

määrä. Alkiossa [y] olisi tieto, onko kysymyksessä kaksi-, kolme- vai neljä

vastausvaihtoehtoa (a,b?, a,b,c?, a,b,c,d?). Kaavakkeita tasaen voisi olla kolme

erilaista samaa henkilöä kohti, ja haluttaisiin tallentaa tiedot samaan taulukkoon,

mutta taulkkoon pitäisi taltioida tieto, mihin kaavakkeeseen vastaus kuuluu, eli

tarvittaisiin kolmas ulottuvuus z. Tämä edellyttää että kaikissa kaavakkeissa on

saman verran kysymyksiä. Tällaisen ohjelman tekemisessä kannattaisi tosin harkita

sisäkkäistä taulukkoa, joka esitellään kohdassa 9.3.

Tällöin luotaisiin taulukko: alkio[x][y][z] jonka muistinvaraus voisi olla vaikka

seuraava:

int [,,] alkio = new int[kysymysten_maara,4,3]

eli esim. int[,,] = new int[20,4,3];

9.2.1: Esimerkkiohjelma yksi- ja moniulotteisesta taulukosta

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Arvosanat

{

 class Program

 {

 static void Main(string[] args)

 {

 int i, j, x;

 Console.Write("Kuinka monta oppilasta

kurssilla oli? ");

 try

 {

 x = int.Parse(Console.ReadLine());

 //tässä x kuvaa oppilaiden lukumäärää,

 //joka kysytään käyttäjältä

 string[] nimet = new string[x];

 int[,] arvosanat = new int[x, 3];

 //Kysytään oppilaan nimi ja arvosanat

 for (i = 0; i < x; i++)

 {

 Console.Write("Anna oppilaan nimi:

");

 nimet[i] = Console.ReadLine();

 for (j = 0; j < 3; j++)

 {

 Console.Write("Anna kurssin " +

(j + 1) + " arvosana: ");

 arvosanat[i, j] =

int.Parse(Console.ReadLine());

 }

 }

 //Tulostetaan tiedot

 for (i = 0; i < x; i++)

 {

 Console.Write("\nOppilaan " +

nimet[i] + " arvosanat:");

 for (j = 0; j < 3; j++)

 Console.Write("\t" + arvosanat[i,

j]);

 }

 }

 catch

 {

 Console.WriteLine("Virheellinen syöte");

 }

 Console.WriteLine("\n\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

9.3: Sisäkkäinen taulukko

Sisäkkäisissä taulukoissa on taulukoita alkioina. Sisäkkäinen taulu esitellään ja

luodaan seuraavasti:

tyyppi [][]...[] taulukon_nimi = new tyyppi[m][n]...[]

[] merkkien lukumäärä määrittää sisäkkäisen taulukon taulualkioiden lukumäärän.

Viimeisessä [] kohdassa ei ole mitään numeroa, vaan se voi vaihdella eri

ulottuvuuksilla ja määrätään erikseen.

9.3.1: Esimerkkiohjelma sisäkkäisistä taulukoista

Seuraavassa tehtävässä voisi kyseessä olla kolme eri koepaperia, joissa kaikissa on

eri määrä tehtäviä. Ensimmäisesä paperissa on 4 tehtävää, toisessa 2 tehtävää ja

kolmannessa 3 tehtävää.

Jokainen tehtävä on sitten arvosteltu asteikolla 1-5.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace SisakkainenTaulukko

{

 class Program

 {

 static void Main(string[] args)

 {

 int i, j;

 //määritellään sisäkkäinen taulukko

 //tässä kaksiulotteisessa sisäkkäisssä

 //talukossa

 //on kolme taulukkoa alkiona

 int[][] numerot = new int[3][];

 //määritellään sisäkkäisen taulukon

 //ensimmäinen rivi

 //joka on nelialkioinen taulukko

 numerot[0] = new int[4];

 //alustetaan taulukko

 numerot[0][0] = 4;

 numerot[0][1] = 3;

 numerot[0][2] = 3;

 numerot[0][3] = 4;

 //määritellään toinen rivi

 numerot[1] = new int[2];

 //alustetaan toinen rivi

 numerot[1][0] = 5;

 numerot[1][1] = 2;

 //määritellään kolmas rivi, joka on myös

 //taulukko

 //tässä myös toinen tapa alustaa taulukot

 //taulukossa on kolme alkiota

 numerot[2] = new int[] { 3, 3, 4 };

 for (i=0;i<3;i++) {

 for (j = 0; j < numerot[i].Length; j++) {

 Console.Write("\t" + numerot[i][j]);

 }

 Console.WriteLine();

 }

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

Tässä ei ole vielä huomioitu, että oppilaita on todennäköisesti useampia. Kymmenelle

oppilaalle sisäkkäinen taulukko pitäisi esitellä seuraavasti:

 //määritetään kolmiulotteinen sisäkkäinen taulukko

 int[][][] numerot2= new int[3][][];

 //määritetään sisäkkäiseen taulukkoon

 //kaksiulotteinen taulukko

 numerot2[0] = new int[4][];

 //sijoitus ensimmäisen opiskelijan

 //ensimmäiseen numeroon

 numerot2[0][0][0] = 4;

 //sijoitus viidennen oppilaan kolmanteen

 //numeroon

 //muistathan: taulukko alkaa alkiosta 0

 //joten luku neljä viittaa viidenteen

 //arvoon

 //ja kaksi kolmanteen arvoon

 numerot2[0][2][4] = 3;

10 strig lauseista ja char tyypistä

strig lause on merkkijono, joka on myös samalla taulukko. Esim. jos on lause string

auto=”Volvo” voidaan kirjaimeen ”V” viitata auto[0] ja ”l” auto[2]. Merkkijonoja

voi liittää + operaattorilla, esim. uusi=”asunto” + ”vaunu” operaation jälkeen uusi on

”asuntovaunu”.

Isot ja pienet kirjaimet ovat eri merkkejä. Jos kirjoitat ”Q” se on ihan eri asia kuin

”q”. Usein on erilaisissa tarkistuksissa käytännöllistä muuttaa ensin kirjaimet isoiksi,

joka tapahtuu metodilla ToUpper() eli esim. lauseIsoilla = lause.ToUpper() .

Merkkijonon voi vastaavasti muuttaa pieniksi kirjaimiksi ToLower() metodilla

sana=sana.ToLower() . Merkkijonon pituutta voi tutkia Lenght käskyllä,

 eli esim. pituus = sanat.Length;

char tyypillä määritellään yksittäinen merkki. char vie muistissa yhden tavun.

Esimerkki: char merkki = 'k';

 //char taulukko

 char [] kirjain = { 'a', 'b',' c',' d' };

 //tai alustamattomana esim.

 char [] merkit = new char[20];

 // .NET tyyppi on Char eli isolla kirjoitettuna

 //char muuttujallevoidaan myös antaa unicode koodi. Tässä esimerkissä n

kirjaimen

 //koodi, joka on 006E

 char merkki = '\u006E';

Hyvä lista unicode merkeistä löytyy Wikipediasta osoitteesta:

http://en.wikipedia.org/wiki/List_of_Unicode_characters

Unicode merkistössä on paljon muutakin kuin vain kirjaimia, joten kannattaa

tutustua.

Huomaathan, että string tyypissä käytetään lainausmerkkejä ” ja char tyypissä

heittomerkkiä ' .

string lauseen voi paloitella sanoiksi Split() metodilla.

string lause = ”C# ohjelmointi on hauskaa.”;

string[] sanat = lause.Split(); //paloittelee string taulukkoon sanat

nyt esim. sanat[0]=”C#” ja sanat[1]=”ohjelmointi”

10.1: Esimerkkiohjelma merkkijonojen käsittelystä: siansaksa

Ohjelma muuttaa tekstiä seuraavasti siansaksaksi:

http://en.wikipedia.org/wiki/List_of_Unicode_characters

 -jos sana alkaa vokaalilla lisätään sanan loppuun way

 -jos sana alkaa konsonantilla sirretään sanan ensimmäinen kirjain sanan loppuun, ja

lisätään

 loppuun ay

-jos alkukirjain on numero tai erikoismerkki, ohjelma ei tee siinä mitään

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Siansaksa

{

 class Program

 {

 static void Main(string[] args)

 {

 string lause="";

 string lause2;

 string[] sanat;

 char[] kon = { 'b', 'c', 'd', 'f', 'g', 'h',

'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'v',

'w', 'x', 'z' };

 while (lause != "quit") //toistetaan niin

//kauan, että käyttäjä syöttää quit

 {

 int i, j, laskuri = 0, tyyppi=0;

 string lopLause = "";

 Console.WriteLine("\nAnna

englanninkielinen lause, joka muutetaan

siansaksaksi.\nAnna quit lopettaaksesi:\n");

 lause=Console.ReadLine();

 sanat = lause.Split(); //paloitellaan

//lause sanoiksi sanat taulukkoon

 laskuri = sanat.Length; //tutkitaan

//laskuri muuttujaan sanat[] taulukon sanojen lukumäärä

 lause2 = lause.ToLower(); //tallennetaan

//lause2 muuttujaan lause pienillä kirjaimilla

 string[] sanat2 = lause2.Split();

//paloitellaan myös lause2 sanoiksi

 for (i = 0; i < laskuri; i++)

 {

 tyyppi = 0;

 string lopSanat = "";

 //tehdään kaikki tarkistukset pieniksi

 //kirjaimiksi muutettuna

 //näin toiminto on sama, alkoipa sana

 //isoilla tai pienillä kirjaimilla

 string sana2 = sanat2[i];

 char merkki = sana2[0];

 switch (merkki) //tarkistetaan, onko

//alkukirjain vokaali, jolloin tyyppi=1

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 case 'y': tyyppi = 1;

 break;

 }

 if (tyyppi != 1) //jos alkukirjain ei

//ole vokaali, tarkistetaan onko konsonantti

 {

 //jos alkukirjain on konsonantti, tyyppi=2

 for (j = 0; j < 20; j++) if

(merkki == kon[j]) tyyppi = 2;

 }

 /*jos alkukirjain vokaali, lisätään

loppuun "way"

 huomioi: tarkistukset tehdään

pieniksi kirjaimisi muutetulla muuttujalla,

 mutta sijoitettaessa lopulliseen

muotoon, käytetään alkuperäistä lausetta

 näin lopullisessa lauseessa säilyvät

isot ja pienet alkukirjaimet

 lopSanat on muuttuja, johon

sijoitetaan lopullinen sana

 */

 if (tyyppi == 1) lopSanat = sanat[i] +

"way ";

 if (tyyppi == 2)

 {

 //jos alkukirjain on konsonantti,

//lisätään loppuun sanan alkukirjain ja "ay"

 string lopSanat2 = sanat[i] +

sanat[i][0] + "ay ";

 //tutkitaan sanan pituus, ja lisätään kolme

 //(ay+loppukirjain=3)

 //poistetaan alkukirjain siirtämällä merkkeja

 //yksi pykälä vasemmalle

 //eli merkki[2] paikalle tulee merkki[3]

 for (j = 0; j < sanat[i].Length+3;

j++) lopSanat = lopSanat + lopSanat2[j + 1];

 }

 //jos alkukirjain on jotain muuta kuin

 //kirjain

 //eli numero tai erikoismerkki, ei

 //tehdä mitään muutoksia

 if (tyyppi != 1 && tyyppi != 2)

lopSanat = sanat[i];

 //lopLause on lopullinen lause, johon

 //sanat peräjälkeen liitetään

 lopLause = lopLause + lopSanat;

 }

 //tulostetaan lopullinen lause

 Console.WriteLine(lopLause);

 }

 } }}

11 Lueteltu tyyppi enum ja vakio const

Luetellun tyypin enum avulla luodaan yhteen kuuluvista vakioista lista. Tyypin

oletusarvo on int, mutta sillä voi kuitenkin käyttää myös muita kokonaislukuja.

Oletusarvoisesti arvot alkavat luvusta nolla, mutta sille voidaan myös antaa

aloitusarvo, esim. yksi. Jos annetaan aloitusarvoksi yksi, seuraava vakio saa

arvokseen kaksi, seuraava kolme jne. Kaikille vakioille voidaan myös määritellä

erikseen arvo. Huomaa, että enum määritellään class osiossa. Jos yrität sijoittaa enum

määritteen main() lohkoon, tapahtuu virhe.

const määreellä luodaan vakio. Vakion arvoa ei voi ohjelman aikana muuttaa. Vakio

voi olla mikä tahansa lukutyyppi, merkki tai merkkijono, esim. ”Kyllä”.

11.1: Esimerkkitehtävä enum lauseesta ja const vakiosta

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace EnumJaConstHarjoitus

{

 class Program

 {

 //huomaa, puolipistettä lopussa ei tarvita,

 //vaikkei se olekaan virhe

 enum vuodenaika { kevat = 1, kesa, syksy, talvi }

 enum mitat { mm = 1, cm = 10, m = 1000, km =

1000000 }

 static void Main(string[] args)

 {

 const double pii = 3.14; //määritetään pii

 //vakioksi ja annetaan arvo

 int r;

 double ympAla;

 try

 {

 Console.Write("Anna ympyrän säde

senttimetreinä: ");

 r = int.Parse(Console.ReadLine());

 ympAla = pii * r * r;

 double ala = ympAla * (int)mitat.cm;

 //tehtävä tyyppimuunnos

 Console.WriteLine("Ympyrän ala

millimetreinä antamallasi säteellä on {0}.", ala);

 }

 catch

 {

 Console.WriteLine("Virheellinen syöte.");

 }

 //Tässäkin tehtävä tyyppimuunnos

 Console.WriteLine("\nSyksyn numero on

keväästä laskettuna " + (int)vuodenaika.syksy);

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

12 foreach() toistolause

foreach toistolauseella käydään taulukoiden ja kokoelmien arvot yksi kerrallaan läpi.

foreach lauseessa käytetään apumuuttujaa, joka saa yhden taulukon arvon vuorollaan

arvoksi. Huomaa, että apumuuttuja on määriteltävä foreach lauseessa.

foreach lauseen syntaksi on:

foreach(tyyppi apumuuttuja in taulukon_nimi)

{

 //suoritettavia lauseita

}

12.1: Esimerkkiohjelma foreach lauseesta

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ForeachHarjoitus

{

 class Program

 {

 static void Main(string[] args)

 {

 string lause;

 string[] sanat;

 do

 {

 int laskuri = 0;

 Console.WriteLine("Anna paloiteltava

lause. Anna quit, kun haluat lopettaa.");

 lause = Console.ReadLine();

 Console.WriteLine();

 sanat = lause.Split(); //paloitellaan

 //lause sanoiksi

 foreach (string sana in sanat) //käydään

 //taulukko sanat läpi

 {

 Console.WriteLine(sana);

 }

 Console.WriteLine("\nSanoja oli " +

sanat.Length + " kappaletta.\n");

 }

 while (lause != "quit");

 }

 }

}

Edellisessä esimerkssä käytiin paloiteltiin lause string

taulukoksi,ja käytiin läpi. foreach lauseella voidaan

yhtä hyvin käydä läpi char tai numeerisia talukoita.

Esim. double [] a={1.6,2.1,4,3};

 foreach (double apu in a)

 {

 //suoritettavat lauseet

 }

tai: char [] kirjain={'a','k','s'};

 foreach (char apukirjain in kirjain)

 {

 //suoritettavat lauseet

 }

13 Ohjausmerkit

Ohjausmerkit, jotka toimivat tulostuslauseissa ja -kentissä. Huomaathan, että kun

kenoviiva \ on itsessään merkki ohjauksesta, niin jos sinun on tulostettava kenoviiva,

joudut kirjoittamaan sen tuplana, eli \\ . Samoin, kun lainausmerkki ” ja heittomerkki '

sisältävät ohjaustietoa, niiden tulostamiseen tarvitset eteen kenoviivan, joka kumoaa

ohjaustarkoituksen.

13.1: Taulukko ohjausmerkit

Ohjausmerkki Kuvaus

\' Heittomerkki

\” Lainausmerkki

\\ Kenoviiva

\0 Null-merkki (ei ole sama kuin C Sharpin null arvo)

\a Varoitus (Alert)

\b Askelpalautus

\f Sivun kelus (Form feed)

\n Rivin vaihto

\r Vaunun palautus (Carriage return)

\t Vaakasuorainen sarkain

\v Pystysarkain

14 Päivämäärän ja ajan ottaminen tietokoneen kellosta

Seuraava ohjelma tulostaa päivämäärän ja kellonajan tietokoneen kellosta otettuna.

Joskus voi olla tarpeen käyttää myös millisekunteja, joiden tulostamisesta on myös

esimerkissä.

14.1: Esimerkkiohjelma aikamäärästä

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Aikamaara

{

 class Program

 {

 static void Main(string[] args)

 {

 int vuosi, kuukausi, paiva, tunti, minuutti,

sekuntti, millisekuntti;

 System.DateTime aika = System.DateTime.Now;

 vuosi = aika.Year;

 kuukausi = aika.Month;

 paiva = aika.Day;

 tunti = aika.Hour;

 minuutti = aika.Minute;

 sekuntti = aika.Second;

 millisekuntti = aika.Millisecond;

 Console.WriteLine("Päivämäärä on " + paiva +

"." + kuukausi + "." + vuosi);

 Console.WriteLine("Kellonaika on " + tunti +

"." + minuutti + "." + sekuntti);

 Console.WriteLine("Millisekunnit ovat: " +

millisekuntti);

 //päivämäärän ja kellonajan voi tulostaa myös näin

 //silloin mitään yllä olevia määritelmiä ei tarvita

 //vaan tämä toimii itsenäisenä

 Console.WriteLine("\nNyt on " +

DateTime.Now.ToString());

Console.Write("\nPaina jotain näppäintä jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

15 Matemaattisia operaatioita

C#:ssa on Math luokka, jossa on paljon hyödyllisiä matemaattisia toimintoja, kuten

potenssiin korotus, neliöjuuri ja trigonometriset funktiot. Siellä on myös piin ja

luonnollisen luvun e arvot.

15.1: Esimerkkiohjelma matemaattisista operaatioista

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace MatematiikkaToimintoja

{

 class Program

 {

 static void Main(string[] args)

 {

 //piin arvon tulostus

 double pii=Math.PI;

 Console.WriteLine("Piin arvo on " + pii);

 //luonollisen luvun e tulostus

 double e=Math.E;

 Console.WriteLine("Luonollisen luvun e arvo

on " + e);

 //neliöjuuri lasketaan seuraavasti

 double nelJuuri=Math.Sqrt(12);

 Console.WriteLine("Luvun 12 neliöjuuri on " +

nelJuuri);

 //potenssiin korotus tapahtuu seuraavasti

 double a=3, b=4, r=14;

 double pot = Math.Pow(a, b);

 Console.WriteLine("3^4 (3 potenssiin 4) on "

+ pot);

 Console.WriteLine("Ympyrän, jonka säde on 14

(kaava pii*r^2), pinta-ala on " + Math.PI * Math.Pow(r,

2));

 //trignometriset funktiot

 //luodaan vakio n, jolla desimaaliluvun saa

 //radiaaneiksi

 //C# käyttää trigonometrisissa laskuissa

 //radiaaneja

 const double n = Math.PI / 180;

 //sini

 double sin = Math.Sin(n*30);

 Console.WriteLine("Luvun 30 sini on " + sin);

 //cosini

 double cos = Math.Cos(n*40);

 Console.WriteLine("Luvun 40 cosini on " +

cos);

 //tangentti

 double tan=Math.Tan(n*80);

 Console.WriteLine("Luvun 80 tangentti on " +

tan);

 //arkusfuktiot

 //arkus sini eli sin -1

 double sinM = Math.Asin(0.8)/n;

 Console.WriteLine("Kulma sinin arvolle 0,8 on

" + sinM);

 //arkus cos eli cos -1

 double cosM = Math.Acos(0.25)/n;

 Console.WriteLine("Kulma cosinin arvolle 0,25

on " + cosM);

 //arkus tan eli tan -1

 double tanM = Math.Atan(8)/n;

 Console.WriteLine("Kulma tangentin arvolle 8

on " + tanM);

 //luonnollinen logaritmi

 double ln = Math.Log(3);

 Console.WriteLine("Luonnollinen logaritmi

luvulle 3 on " +ln);

 //kantaluku kantainen logaritmi

 //syntaksi Math.Log(kantaluku, numerus)

 double log = Math.Log(3,6);

 Console.WriteLine("Logaritmi 3 luvulle 6 on "

+ log);

 //kymmen kantainen logaritmi

 //syntaksi Math.Log10(numerus)

 double x = Math.Log10(8);

 Console.WriteLine("Logaritmi 10 luvulle 8 on

" + x);

 Console.Write("\nPaina jotain näppäintä

jatkaaksesi...");

 Console.ReadKey(true);

 }

 }

}

16 bool tyyppi

bool tyypin muuttuja saa arvon joko true (tosi) tai false (epätosi).

Esimerkki:

bool n, m;

n = true;

m=false;

.NET muoto on isolla kirjaimella kirjoitettuna Boolean

bool tyypin koko muistissa on yksi tavu.

Esimerkki 16.1: bool tyyppi ja ehto operaattori ?

bool vastaus;

int x=2, y=4;

vastaus = (x <= y) ? true : false; //vastaus saa arvon

true

17 Satunnaisluku

Satunnaisluku luodaan Random luokasta new avainsanalla, ja sitä käytetään Next()

metodilla. Alla oleva esimerkki valaisee asiaa. Next() metodille anntetaan kaksi

lukua, joiden välistä sanuttaisluvut arvotaan. Lukujen on oltava kokonaislukuja,

mutta miinusmerkkiset kelpaavat. Ensimmäisen luvun on oltava pienempi kuin

toisen. Ohjelma ottaa ensimmäisen arvotun luvun käyttöön, ja arpoo siitä toiseen asti,

eli suurenpaa lukua ei enään oteta mukaan. Next(1,4) arpoo lukuja 1,2,3;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Satunnaisluku

{
 class Program

 {
 static void Main(string[] args)

 {
 int i;

 Random satluku = new Random(); //Luodaan

 //satunnaisluku olio satluku
 //Next käskyllä arvonaan satunnaisluku annetulta

 //väliltä
 for (i=0;i<40;i++) //yhden rivin for lausekkeessa

 //ei tarvita {} merkkejä
 Console.WriteLine(+satluku.Next(0,7));

 //tulostaa 40 satunnaislukua

 //Huomaa, ensimmäinen luku otetaan mukaan,

 //muttei toista
 //Eli tätä arpoo luluka 0,1,2,3,4,5,6

 Console.Write("\nPaina jotain näppäintä
jatkaaksesi...");

 Console.ReadKey(true);

 }
 }
}

18 Hyödyllisiä linkkejä

Microsoftin .NET ohjelmointisivut: http://msdn.microsoft.com/en-us/library .

Microsoftin .NET keskustelufoorumi: http://social.msdn.microsoft.com/Forums/en-

US/categories .

Visual Studio 2010 latausosoite: http://www.microsoft.com/express/Downloads/

Novellin Mono kehitysympäristö: http://www.mono-project.com/Main_Page

Omat sivuni: www.netti-lakka.com

Ohjelmointisivuni: www.ohjelmoimaan.net

http://msdn.microsoft.com/en-us/library
http://social.msdn.microsoft.com/Forums/en-US/categories
http://social.msdn.microsoft.com/Forums/en-US/categories
http://www.microsoft.com/express/Downloads/
http://www.mono-project.com/Main_Page
http://www.netti-lakka.com/
http://www.ohjelmoimaan.net/

19 Lähteet

-Ammattiopisto koulutus: OSAO

-Programming C#: Liberty, Jesse

-C#-ohjelmointi: Moghadampour, Ghodrat

-Microsoftin C# sivut: http://msdn.microsoft.com/en-us/library

-MSX-assembler ja -konekieli: Ian Sinclair

http://msdn.microsoft.com/en-us/library

